

15JVE 8Ω

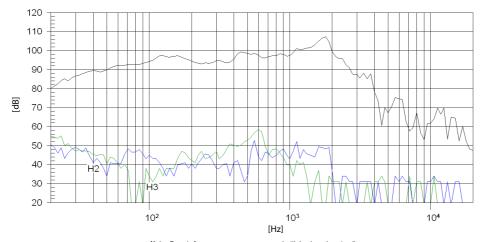
Low & Mid Frequency Transducer

TECHNICAL SPECIFICATIONS

Nominal diameter	380 mm 15 in
Rated impedance	8 Ω
Minimum impedance	6,7 Ω
Power capacity*	400 W _{AES}
Program power	800 W
Sensitivity	95 dB @ 1W @ Z _N
Frequency range	30 - 2.000 Hz
Voice coil diameter	76,2 mm 3 in
Air gap height	7 mm
Voice coil length	17,5 mm
BI factor	16,2 N/A
Moving mass	0,117 kg
Winding material	Copper
Magnet material	Ferrite
Cone material	Paper cone
	Shiny treatment
Frame material	Steel

MOUNTING INFORMATION

Overall diameter	386 mm	15,2 in
Bolt circle diameter	370 mm	14,5 in
Baffle cutout diameter	352 mm	13,8 in
Depth	160 mm	6,3 in
Net weight	5,75 kg	12,65 lb


THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	30 Hz
D.C. Voice coil resistance, R _e	6,2 Ω
Mechanical Quality Factor, Q _{ms}	8,97
Electrical Quality Factor, Qes	0,52
Total Quality Factor, Qts	0,49
Equivalent Air Volume to C _{ms} , V _{as}	260,1 I
Mechanical Compliance, C _{ms}	237 μm / N
Mechanical Resistance, R _{ms}	2,48 kg / s
Efficiency, η ₀	1,31 %
Effective Surface Area, S _d	0,088 m ²
Maximum Displacement, X _{max} ***	7,2 mm
Voice Coil Inductance, Le	1,2 mH

FREE AIR IMPEDANCE CURVE

FREQUENCY RESPONSE AND DISTORTION

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 2,83V @ 1m.

Notes:

This datasheet is done with the measurements of a laboratory prototype. Small differences may appear once the driver is transferred to the

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.