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ABSTRACT 

 
The article presents the results of the subharmonic analysis of single suspension loudspeakers such as the 
compression drivers. The formation, synchronization and lock-in of the subharmonic frequencies, when working 
with the analytic form of the pressure signal, have been observed. A parametric or autoparametric (internal 
resonance) mechanism seems to be the main cause of these subharmonic excitations and responses. The modal shape 
of the moving assembly including the diaphragm, coil, former and suspension has an important role in the whole 
dynamic of these transducers. 
 
One of the four analyzed samples presented a bilinear response, because of a spontaneous formation of sidebanding 
when it was excited in specific spectral regions. Another sample showed a combined behavior which was in between 
the bilinear character and the locked-in subharmonic. This sample exhibited regions in which the spontaneous 
sidebanding had a fractal structure. The basic control criterion of subharmonic responses is to avoid specific modes 
whose eigenfrequencies are multiples of each other. 

 

1. INTRODUCTION 

Subharmonics are spectral responses whose frequencies 
are sub–multiples of the forced frequencies, usually, 
their first sub-multiples. In 1831 M. Faraday reported 
observations of water waves responding at half the 
frequency of the mechanical excitation [1]. For many 
years, mathematicians have also given formal analytical 
explanations for this type of response [2].  In several 
engineering fields, the frequency analysis of dynamic 

devices can exhibit these subharmonic spectral 
components. The topic has had importance in, among 
others, transportation systems and machinery dynamics. 
 
The appearance of acoustic subharmonics radiated by 
loudspeakers was reported as early as 1935 by P.O. 
Pedersen [3] and, later by H. F. Olson [4]. P.O.Pedersen 
deduced that the subharmonic generation was caused by 
a resonance of the diaphragm. The author reported that 
some amount of time was needed for synchronization of 
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the electric signal with the subharmonic acoustic 
response. H.F.Olson gave importance to these distortion  
components, mainly in midrange speakers. He assigned 
a significant cause for this distortion to the suspension’s 
nonlinearities and to the mechanical weakness of the 
cones. The work of W.J. Cunningham, published in 
1951 [5], deals with subharmonics in loudspeakers of 
double suspension. The author gave specific 
explanations of the causes of the phenomenon with a 
closer approach to the cone modal behavior. 
 
The subharmonic components deliver an unpleasant 
sound even at low amplitudes. Sometimes these produce 
abnormal sounds when speakers are swept with an 
oscillator. Moreover, when a tweeter is swept at a very 
high frequency range in which we no longer hear the 
signal, for it is beyond our sensitivity range, it is not 
unusual that we can suddenly hear a tone again. 
As the appearance of distortion tones of subharmonic 
frequencies is not the only cause of distortion at 
frequencies lower than the excitation, we shall also see 
the spontaneous formation of sidebanding spectra, 
which is a nonlinear signature that occurs in some 
specific circumstances. Reference [6] is one of the most 
in-depth reports dealing with this topic in loudspeakers 
that refer both to subharmonics and to spontaneous 
sidebanding. The author does not give an explanation of 
the causes of these distortions. The paper’s aim is to 
address the causes of these distortions in single 
suspension speakers. 
 

2. PARAMETRIC EXCITED OSCILLATIONS 

The main cause of subharmonic generation in dynamic 
systems is the parametric excitation. This excitation 
consists in the generation of forced vibrations by means 
of the periodic change of a parameter [7]. It is well 
known that children give energy to a swing by the 
periodic motion of their bodies, without any other 
external force. This single degree of freedom system, 
obtains the energy needed for the motion by means of 
the periodic change of the effective length of the swing. 
The natural frequency of the pendulum, for small 
oscillations (linear range) is only a function of its length 
and the acceleration of gravity, which is constant. The 
most common parametric excitation is the one exerted 
by a periodic parameter variation whose frequency is 
twice the natural frequency of the swing, but other 
relationships are possible too. For a mechanical system 
with low damping, the natural frequencies are functions 
of the inertias and stiffness of the constituent elements. 

The mass seldom changes parametrically but in several 
cases stiffness can be modulated periodically.  
 
One form of a parametric excited system is Mathieu’s 
equation that derives from Hill’s differential equation. 
The Mathieu differential equation has the expression: 

 
d2 x / dt2 + �0 

2 [1 + A*cos (p* t)]*x = 0 (1) 
 
Where: 
x: is the displacement 
A: is the amplitude of the harmonic function. 
p: is the circular frequency of the parameter forcing 
function, which is called pumping in some references. 
�0:  is the natural circular frequency of the single degree 
of freedom system when it is free of any pumping action 
(A equals zero). 
 

 
Figure 1: Two regions of instability of the Mathieu’s 
parametric excited system. The unstable regions depart 
from points where the pumping circular frequencies (p) 
are twice or equals the natural circular frequency (ω0) of 
the unperturbed system. The parameter A is the 
amplitude of the parametric excitation. When the 
amplitude A increases, the unstable region becomes 
broader. 
   
Mathieu’s equation has the simplification of not 
damping. If certain conditions between A and �0 are 
satisfied, there may exist periodic solutions of equation 
(1). Figure 1 depicts a simplified plane (A, �0) showing 
regions of stability and instability of the variable x of 
equation (1) depending on the relation of the pumping 
circular frequency in respect to the unperturbed natural 
circular frequency (p / 2 �0), and also depending on the 
amplitude of the harmonic forced parametric function 
A. Notice that for the displayed normalized frequency 
range of Figure 1 the widest unstable region 
corresponds to the value of a pumping circular 



Bolaños Subharmonics in Compression Drivers
 

AES 118th Convention, Barcelona, Spain, 2005 May 28–31 

Page 3 of 16 

frequency p which is double that of the natural circular 
frequency of the unperturbed system �0. The region of 
coincidence of the pumping circular frequency and the 
natural circular frequency is unstable too, but it is 
narrower. An unlimited build up of amplitude takes 
place in a linear and conservative oscillating system 
under parametric excitation, which is called a 
parametric resonance. In practice, for real dissipative 
systems, the balance between the energy supplied to the 
system by the parametric action and the losses of the 
non conservative system gives an unstable or stable 
(bounded) output. 
 
Mathieu’s equation refers to conservative, linear 
parametric and single degree of freedom systems. Real 
systems are seldom linear and often have several 
degrees of freedom. A detailed explanation of the topic 
is beyond the aim of the paper. References [7] and [8] 
give detailed theories. From an engineering and 
experimental point of view there is an abundance of 
literature: reference [9] deals with the classic problem of 
the axial excitation of a bar. Reference [10] is concerned 
with the control of a vertical subharmonic motion by 
means of a pendular absorber. Reference [11] addresses 
the same topic but the parametric oscillator is a rotating 
pendulum and is controlled or absorbed by the vertical 
motion of its pivot. Professor P.O. Pedersen [3] refers to 
the subharmonic generated by loudspeakers as “Mathieu 
oscillations”. 

2.1. Internal Resonance and Combination 
Resonance 

For real systems that have several degrees of freedom 
and a certain degree of nonlinearity, when they are 
excited, their time responses can contain large 
contributions from several modes. The specific trend of 
instability exhibited by some dynamic systems, whose 
natural frequencies are multiples or near multiples of 
other natural frequencies, has been known for many 
years [8]. The internal resonance condition is exhibited 
for those systems where two or more of its linear normal 
modes follow the condition expressed in (2). 

 
                              fp = n * fq   (2) 

 
Being: fp and fq any natural frequency of the system and 
n a positive integer, usually small. 
 
When two natural frequencies of a system with 
quadratic nonlinearity have a ratio 2:1, there exists a 
saturation phenomenon that consists of the following: 
the system is excited at its highest frequency and it 

responds to amplitude proportional to the excitation 
force (linear). If we increase the excitation force, a 
certain point is reached where the system loses its 
stability and both the lower and higher modes are 
excited. Those systems with these properties have a 
strong link between the modes and a high tendency to 
instability [12].  
 
Modal interactions for systems with a certain level of 
nonlinearity can occur when the excitation frequency is 
close to the sum or the difference of two or more natural 
frequencies, but many other combinations may be 
given. This phenomenon of excitation of a nonlinear 
natural frequency, which can be a linear combination of 
some other normal modes, is called combination 
resonance [13]. The type of response when a 
combination resonance is excited depends on the type 
and amount of nonlinearity and the number of modes 
involved in the process. If a system is excited by a 
single sine signal of frequency f and has linear 
eigenfrequencies fi, a general case of combination 
resonance can be obtained if the excitation frequency 
and some or all natural frequencies fulfill the following 
relationship: 
    

                  f =Σ ni * fi   (3) 
 

Being: ni integers, positive or negative, usually small. In 
engineering there is an acceptance if the relation (3) is 
not exactly fulfilled and certain proximity is reached. 
Reference [13] reports the transfer of high frequency 
motions to low frequencies through mechanisms of this 
nature. One reported experiment concerned itself with 
the energy transfer from an excitation signal of 194.2 
Hz to a very low frequency of 3.7 Hz. The device tested 
was a mechanical structure constructed for this purpose. 
The authors designed the structure carefully trying to 
build up a mechanical device with its normal 
frequencies as multiples of each other. The transfer is 
given by means of the normal modes. 
 
Reference [14] deals with normal modes in nonlinear 
systems, giving a detailed overview of the topic. In the 
field of acoustic transducers, reference [15] reports that 
buckling, especially at high sound levels, can lead to the 
production of subharmonics. This was the only cause of 
this type of distortion mentioned by the authors. The 
mode shapes of the loudspeaker diaphragms have been 
studied in detail by various authors [16], [17], [18], 
mainly because the interest of new developments 
including the sandwich and honeycomb core 
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constructions. I. Aldoshina’s [19], [20] research is very 
specific from the point of view of nonlinear parametric 
oscillation and the subharmonic presence in 
loudspeakers. She assigns this phenomenon to 
diaphragms and the bending waves in the cones. 
Reference [21] shows a detailed overview of the results 
obtained when applying the Finite Element Analysis 
(FEA) to the titanium diaphragm and the suspension set 
of a 50 mm diameter tweeter. The author used the 
Operational Deflection Shapes (ODS) technique and the 
Laser Velocity Measurement (LVM) procedure as well. 

 

3. MEASUREMENT OF SUBHARMONICS IN 
COMPRESSION DRIVERS 

3.1. Single Subharmonic Response 

 
In order to find the subharmonic’s generation causes, 
four available compression drivers made by different 
manufacturers were tested. 
 
 Sample A is a three inch titanium dome compression 
driver with flat polyester suspension. Sample nominal 
impedance is 16 �. The unit was excited sinusoidally at 
a constant RMS value of 3 volts. The acoustic output 
was picked up by a microphone at the transducer’s 
throat center in the very near field and was analyzed by 
the B& K dual channel spectrum analyzer type 2035. 
The analyzer set up was as follows:  
 
Peak average for all sinusoidal sweep tests, this average 
keeps the measured amplitudes while the sweep is 
running. For all sweep tests, the time signal was 
Hanning windowed, and the overlap was set to the 
maximum. The displayed acoustic measurements were 
calibrated in dB and referred to 20 micro Pascals. 
 
Although the sound pressure level is calibrated, several 
measurements gave high levels because of the proximity 
from microphone to the transducer. Notice this distance 
was as small as possible because the purpose was to 
pick up the signal close to the place it was produced and 
thus find the causes of the distorted signals. 

 
Figure 2: Acoustic band limited response of the sample 
A when it is swept from 11 kHz to 20 kHz. Measuring 
microphone installed at the output throat of the 
transducer. No horn used.  
 
 
Figure 2 depicts the average spectrum delivered by the 
sample for a slow sine sweep at a constant value of 
three volts from 11 kHz to 20 kHz. The peaks at the 
right of the sweep range are due to harmonic distortion, 
the left peak of 76.1 dB at 8480 Hz is a subharmonic 
generated by the transducer under test. The sound 
pressure at the excitation frequency of 16960 Hz is 
108.4 dB. Some cancellations in the response and in the 
harmonic distortion can be seen because of the position 
of the measurement microphone and the lack of free 
field conditions of the tests; but the subharmonic 
component is clearly enhanced. 
 
The process of the phase lock-in of signals is accurately 
explained theoretically in [22], and mainly addressed to 
electronic devices. Reference [23] is more specific in 
mechanical devices, and [24] details these mechanisms 
both theoretically and with practical examples in several 
systems of different natures.  In order to analyze the 
lock in mechanism between the electric signal and the 
subharmonic acoustic tone, a stable sine wave of the 
excitation frequency to the speaker was abruptly 
applied, and the response was recorded. This technique 
can be seen in reference [25], but the authors develop 
the method mathematically. 

In order to avoid potential measurement errors due to 
the electronic equipment (heterodyning, noise addition, 
etc.), the measurement procedure and the 
instrumentation used were simplified as much as 
possible. The analyzer was set in the range 0 to 12.8 
kHz. The instrument has a built in antialiasing low pass 
filter that rejects frequencies over the base band. The 
response of the speaker to the single forced signal was 
treated on the analyzer as a transient signal and recorded 
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and processed on time domain. P.O. Pedersen [3] found 
that the subharmonic does not rise immediately to its 
full intensity. He reported that if the excitation voltage 
only slightly exceeds the threshold value the speaker 
may take a few seconds to reach the final amplitude. 
When treating problems in time domain it is often 
convenient to use the analytic signal, instead of the 
signal itself, see for example the reference [26]. 
 
Following the notation of [27], if õ (t)   is the Hilbert 
transform of the signal o (t); the analytic signal 
corresponding to o (t) is defined as: 
 
  ô (t) =  o (t)  + i õ (t)   (4) 
 
 The magnitude or the envelope of this analytic function 
is: 
 

� ô (t) � = � (o2 (t) + õ2 (t))  (5) 

The (instantaneous) phase of the analytic signal is: 

� (t) = tan-1 ( õ (t)  / o (t) )    (6) 

The rate of change of phase is the instantaneous 
frequency: 

 fi  (t) = 1/ (2*�)  * d � (t) / d t   (7) 
 

 
Figure 3: The analytic signal.  (a) Time limited cosine 
function. (b) Imaginary part versus real part of the 
analytic signal. (c) One cycle of the real part. (d) One 
cycle of the imaginary part. (e) Magnitude.  (f) One 
cycle of the phase. 
 

Figure 3, in section a, shows the analytic signal of a 
finite cosine function, which in accordance with the 
definitions given, will have the shape of a helix 
revolving uniformly around the time axis. Figure 3, in 

section b, depicts the imaginary part versus the real part 
of the analytic signal (Nyquist form). Sections c and d 
depict the real part o (t) and the imaginary part õ (t) of a 
period of this analytic function ô (t). Finally, sections e 
and f depict the magnitude which is constant along the 
time, and the phase which is a linear function of time 
increasing 2*π radians per cycle. 

Figure 4 depicts the beginning of the transient time 
signal decomposed in the real part and the phase. Both 
curves exhibit a drift, which is characteristic in phase 
lock-in systems. The real part of the transient signal is a 
growing oscillation biased by the drift. H. Yabuno and 
his colleagues [10] obtained DC components on their 
experiences with parametric excited systems. The phase 
signal is a developing back and forth oscillation over a 
biased smooth ramp; the inset shows oscillations at the 
time of the cursor. Observe how the phase function is 
not the phase of a harmonic signal, which is a straight 
line. If we trigger the analyzer 30 milliseconds after the 
signal is applied to the sample under test, some parts of 
the lock-in process are visible. Figure 5 depicts these 
results over a range of 62 milliseconds, the real part is 
still growing, with less drift, and the phase exhibits not 
only back and forth oscillations but also rotations at 
some discrete points. The phase of the time signal 
during the synchronization process is performing 
continuous oscillations and discrete rotations until the 
phase ramp of a sine wave is reached. 

 

 
Figure 4: Sample A. Forced sine function is applied 
abruptly. Real part and phase of the beginning of the 
subharmonic response. Trigger delay of the analyzer is 
zero seconds. Phase inset is a detail of libration. 
 
 
In classical mechanics [28] the backward and forward 
phase motion is called “libration” and the motion of a 
complete circumference, called “rotation”. Some 
trapeze artists on a swing are able to supply energy 
themselves to the swing, reaching huge oscillation 
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amplitudes and even a complete rotation. If the 
performer wants to obtain a continuous rotation, the 
primary motions will be various oscillations of growing 
amplitude before he reaches the amplitude to rotate and 
keep the rotation, which is the final steady state. In [24] 
librations are named “forced kicks”, and the authors 
explain that this is a very common way to synchronize 
systems. These discrete rotations of the phase signal, as 
shown in Figure 5, seem to be discrete unstable 
switches, but the signal is not mature enough to keep the 
final phase state that is linear phase increment and 
returns to the lock-in process by periodic kicks. The 
authors of [24] called these transitory complete rotations 
“slips”, and they explained it as synchronism loss or 
tuning loss. The slips of the Figure 5 seem to be an 
adjustment from the phase to the amplitude. When the 
subharmonic signal is growing the best adjustment for 
the next time instant is with an amplitude, very similar 
to the previous one, and a phase rotation (one or several 
complete turns). This is the best synchronization 
because the amplitude of the oscillation is more stable 
than the phase. If the conditions of permanent rotation 
have not been achieved then the slave oscillator (the 
subharmonic mode) will stay in forced kick mode until 
it does achieve it.  
 
 

Figure 5: Sample A. Forced sine function is applied 
abruptly. Real part and phase of the subharmonic 
response. Trigger delay is 30 milliseconds. Phase shows 
“slips” or discrete rotations. 
 
 
In reference [29] one of the authors, A. Neishtadt, 
explains that the change from libration regime to 
rotation regime or vice versa is a resonance capture. 
This means that the discrete rotations shown in figures 

are unstable transient resonance captures, previous to 
the steady state of a stable subharmonic. 
 

3.2. Measurements in a Larger Diameter Unit 
 
Sample B is a four inch dome compression driver with 
bellows suspension. The suspension and the dome are 
made of titanium. The nominal impedance is 8 �. This 
unit presented two subharmonics for an excitation level 
of 3 volts. 
 

 
Figure 6: Sample B.  Acoustic band limited frequency 
response when sample is swept from 13 kHz to 20 kHz. 
Microphone is on the near field of the suspension. 
 
 
In order to pick up the signal as close to its origin, it was 
decided to implement the measurements very close to 
the moving assembly. The back cover was taken off, 
and because the highest subharmonic levels were found 
close to the suspension, the measuring microphone was 
installed in front of the suspension at a distance of 2.5 
mm. Following the same procedures completed for 
sample A, a slow sine sweep of 2 volts RMS was 
applied to the unit. The region swept was 13 kHz to 19 
kHz. The result is illustrated in Figure 6 where two 
differentiated subharmonic peaks are shown. The 
subharmonic frequencies are 7800 Hz and 8540 Hz 
respectively. Because of the proximity of the 
microphone to the region of subharmonic generation, 
the relative level of these components in respect to the 
sweep is much higher than those found in sample A. 
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Figure 7: Sample B. Forced sine function of 17106 Hz 
is applied abruptly. Real part and detail of phase of the 
beginning of the subharmonic response. Measurement 
microphone was installed very close to the suspension. 
 
 
The steady sine signals, whose frequencies are double 
that of the subharmonic components, were applied 
following the procedure used in sample A, and the 
“birth” of the subharmonics was recorded. Figure 7 
depicts the first part of the time signal of the formation 
process for the upper frequency (17106 Hz). Observe 
how the amplitude drift for this sample is much lower 
than that of sample A, but now the signal is picked up 
on the very near field of a single part of the transducer. 
The small amplitude oscillations of this figure and the 
following are caused by the digital analyzer shortage of 
sampling; but the use of this analyzer has the advantage 
of simplified measurement instrumentation, which is 
very convenient for the registered transients. 

The transient rotations of the time phase between 15 and 
20 millisecond are integer multiples of a complete 
rotation. The rest of the figure is similar to Figure 5. 
Figure 8 depicts the formation of the subharmonic 
component, close to the final stable state, much later. 
Observe how the amplitude is still growing but the 
phase has reached the final stable state with a pure 
rotation (linear increasing phase). Notice in the figure 
that the phase is rotating 3097.6 degrees each 
millisecond. This phase corresponds to a  frequency of 
8543 Hz. It is necessary to take into account the 
different vertical scales of the phase functions of 
Figures 4, 5, 7 and 8, in order to understand the “birth” 
of the subharmonic signals and compare the different 
phases of the process. 

 
 
Figure 8: Sample B. Forced sine function of 17106 Hz 
is applied abruptly. Upper: Real part of the time 
response of the final part of the subharmonic formation. 
Lower: Phase of the time response of the final part of 
the subharmonic formation. 
 
 
Because both subharmonics grow at different speeds, 
additional measurements have been taken to show their 
differences. Figure 9 depicts the real part of both 
subharmonics, being triggered by the analyzer 60 
milliseconds after the application of the excitation 
signals to the sample. The transient shown at the bottom 
has a settling time much shorter than the one 
represented on top of the figure. Notice this fastest 
subharmonic seems to have a bounded output, while the 
slower subharmonic is growing much more slowly 
(compare the scales in legend on the left side of the 
graph), and is far from this bounded output. Notice too, 
the small drift which the slower subharmonic has, as 
shown on the left portion of the magnitude function. 
 
Amplitude oscillations of Mathieu’s type [3] for real 
systems with damping are controlled by the balance 
between the external energy fed to the system and the 
losses of the system. It seems that the process follows a 
limit cycle scheme with the amplitude increasing until it 
reaches the cycle, which is stable. The theory of limiting 
cycles is available in various books; see for example 
[30] and [31]. An acoustic limit cycle is mentioned in 
[32]. W.J. Cunningham [5], in 1951, explained in his 
paper that there is a “limited action” of the growing 
subharmonics.  
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Bounded

 
Figure 9: Sample B. Comparison of real part time 
responses of the slow (upper) and fast (lower) 
subharmonic when the analyzer is trigger delayed by 
sixty milliseconds after the delivery of the electric sine 
signal. 
 
 
It may be convenient to measure the electromotive force 
induced on the speaker’s coil while the subharmonic is 
fully generated in steady state; this gives information of 
the coil’s axial velocity during the subharmonic 
radiation. The unit was excited with 2 volts. Figure 10 
depicts frequency spectra of the voltages on the coil 
while the sample is radiating each subharmonic. 
Observe how the fastest subharmonic has a level 18.8 
dB (8.71 times) lower than the slow one. This higher 
axial coil motion of the slow subharmonic may indicate 
that this subharmonic has higher probability to involve 
the transducer’s axial mode (shown below in the text) 
than the fast subharmonic. 
 

 
 
Figure 10: Sample B. Spectral analysis of the coil’s 
induced voltage, in steady state, while the driver is 
radiating the slow (upper) and fast (lower) subharmonic. 
 
  

3.3. Modal Analysis of the Whole Moving 
Assembly 
 
The authors P.O. Pedersen [3], H.F. Olson [4], W. J. 
Cunningham [5] and J.K. Hubbard [6], believed that an 
important cause of the subharmonic generation is 
related to diaphragm resonances. D. Bie [21] included in 
his study the dynamics of the compression driver’s 
suspension. The performance of the transducer must 
include the coil and the former as well because they 
have a definite contribution to the moving assembly 
dynamics. 
 
The moving assembly has been modeled by means of 
finite element software. The models use triangle 
elements of the Kirchoff type, except for the dome 
modeling that was a quadrilateral element. The element 
used carries five degrees of freedom per node (three 
translations and two rotations). This element is suitable 
for shells that carry in-plane and out-of-plane loads. 
Those modes related with the dome deformation are 
better found with a square element for symmetry causes. 
The software provides modal analysis of the moving 
assemblies. 
 
 There are some mode shapes of the moving assembly 
that can carry the subharmonic tones (the response 
related with �0), and there are modes able to act as 
excitation modes (the cause related with the pumping 
p). A brief basic description of the significant modes 
involved in this process is the following: 
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Figure 11: Main suspension mode. The suspension flaps 
up and down, the rest of the moving assembly is nodal 
or almost nodal. 
 
 
a) Main Suspension’s Flapping Mode. The suspension 
flaps axially up and down with all points moving in 
phase. The suspension outer circumference is obviously 
nodal and the inner circumference is nodal or nearly 
nodal too. Bellow suspensions are more excitable in this 
mode than the flat ones. The median circumference of 
the suspension is an antinode. Figure 11 depicts this 
mode. This mode is relevant because the axial force on 
the coil it is concentric with inner suspension’s 
circumference. 

 
Figure 12: Transducer axial mode. The coil and the 
dome move axially towards each other. The former 
shortens and stretches axially. 
 
 
b) Main Axial Mode of the whole moving assembly. 
This mode consists in the axial stretching and 
compressing of the whole former (which is weak in 
respect to the neighboring materials), because of the 
inertia forces of the dome and the coil moving along the 
transducer axis. These masses move like a two degrees 
of freedom system in its second mode, axially pushing 
and pulling the former. Depending on the former´s 
thickness the mode may include a certain amount of 
“breathing” of the main inertias in motion (the dome 
and the coil). This mode is relevant because the force is 
exerted on the coil in the same direction that the coil`s 
has in the mode shape. The mode is illustrated in Figure 
12. 

 

 
Figure 13: Circumferential axisymmetric dome mode 
with one nodal circumference. 
 
 
c) Symmetric Dome Modes. The dome exhibits 
modeshapes that are symmetrical as in a disk, following 
the terminology of Mac Lachlan [33]. The author 
classified the mode shapes in a diaphragm as 
symmetrical (as in a disk) and radial (as in a bell). The 
symmetric modes are circumferential modes; which 
nodes and antinodes are circumferences. These 
symmetric modes yields substantial axial forces and or 
moments at nodal circles, and these modes are able to 
excite other modes which have the same nodal circles 
too. In particular, the coil and the inner suspension 
circumference are nodal for these mode shapes. Two of 
these modes are depicted in the Figures 13 and 14. 
These modes are easily excited in a compression driver 
because the coincidence with the shape of the phase-
plug slots, and because the strong air load at which the 
dome is submitted. Domes of large diameter have 
higher probability to be excited by these modes because 
the shallow arch behavior [40] and [41]. 
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Figure 14: Circumferential axisymmetric dome mode 
with various nodal circumferences.  
 
 
d) Coil’s Conical Mode. The set composed by the coil 
and the former becomes conic, with the apex switching 
up and down. The mode shape is illustrated in Figure 
15. This mode is not very much influenced by the 
stiffness of the nearby suspensions and consequently is 
not very sensitive to or dependent on, the suspension 
shape. The mode shape is axisymmetric. 
 
e) Coil’s “Breathing” Mode. It is a radial mode shape 
based on the so-called “in- plane” forces acting on the 
coil. These in-plane forces are forces of each coil 
constituent element stretching and shortening the coil 
like a belt. A simple illustration of this motion could be 
the deformation obtained when heating and cooling the 
body periodically. The coil opens and closes as if it was 
“breathing”. These concepts are explained in the books 
[34] and [35]. The coil's breathing mode, which is an 
extensional mode, is illustrated in Figure 16. The mode 
shape is axisymmetric but normal to the coil’s force. 

 

 
Figure 15: Coil and former conic mode. The coil and 
former closes and opens depicting a conic shape with 
the apex swinging up and down. The suspension moves 
synchronously following the former. 
 
 
Any of these modes can be a subharmonic or motional 
mode (the mode which radiates sound). 
The acoustic efficiency of the subharmonic will be 
proportional to the modal antinode area and the position 
of this antinode area in respect to the transducer axis. 
Any of the significant modes mentioned above can be 
an excitation mode if the action is autoparametric. This 
excitation mode will supply the periodic change (linear 
or rotary) of stiffness or length to the motional mode. If 
a nodal contour line of a radiator mode receives forces 
or moments in phase that modify the average translation 
or rotation stiffness of this line, fulfilling the Mathieu’s 
conditions (for example twice per cycle), then a 
parametric action is established. If the external force or 
moment modifies the average length of angle of this 
contour line, this will cause a parametric action too. 
When the external force is exerted by the coil because 
of the electromagnetic force, then there is a parametric 
excitation. If the coil’s force excites any mode of those 
mentioned above and this mode feeds force or moment, 
by geometrical coupling, to the nodal contour line of 
one of the radiator modes, then the oscillation will be 
autoparametric. When a system or device has 
autoparametric oscillations it’s said that has internal 
resonance. 
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Figure 16: Coil in extensional mode or breath mode. 
The coil opens and closes on a plane which is 
perpendicular to the transducer axis. The former follows 
the coil changing periodically its slope. 
 
 
The coupling of modes, as mentioned before, is done 
through nonlinear mechanisms, some of which are not 
fully understood, [12] and [13]. Usually in compression 
drivers these couplings are not linked too fast and need 
some synchronization time, as depicted in Figures 4, 5, 
7 and 8.  
 
It is obvious that those modes which the main motion is 
on the transducer axis are more excitable than those 
which do not, because the coil’s action trends to excite 
these symmetric modes. The conic mode and the coil’s 
breath mode, despite the main motions are not in the 
axial direction, they can be excited because in practice 
there is a residual axial motion of these modes (the 
coil’s axial motion is small but not null) and because 
they are much less damped by the electric forces than 
the modes with large axial motion of the coil. 
 
 
4.  OTHER RELATED DISTORTIONS 

 

4.1.  Spontaneous Sidebanding Response 

 
Sample C is a three inch titanium dome compression 
driver with flat polyester suspension. This transducer is 
similar to sample A, but it was made by a different 
manufacturer. Nominal transducer impedance is 8 �. 
This sample did not have the tendency to generate 
subharmonics with the electric voltages we submitted to 

sample A. Nevertheless for excitation voltages equal or 
higher to 4 volts, the sample exhibited spontaneous 
sidebanding. Measurements of sidebanding response in 
compression drivers were reported in [6], although the 
causes of the phenomenon were not explained. A 
sidebanding response is called spontaneous, because 
these sidebands are not produced by intermodulation of 
two tones applied to a nonlinear device. On the contrary 
the excitation is only a single frequency.  The term 
“spontaneous sidebanding” has been taken from other 
fields of engineering [44] 
 

 
Figure 17: Spontaneous sidebanding performance when 
sample C is excited with a sine wave of 13088 Hz.    
 
 
In Figure 17 there is the response of sample C to a 
stable sinusoidal signal of 13088 Hz in which we can 
see the frequency of the applied signal and two 
sidebands 858 Hz apart. Observe as well, on the right 
side of the figure a sideband of the second harmonic of 
the applied signal (the second harmonic is beyond the 
analyzer frequency range). The transducer responds as if 
it had been excited by the high and low frequencies 
simultaneously.  

 
 
Figure 18: Fourier transform of the acoustic response of 
the sample C for a sine wave abruptly applied. Upper 
figure is the response for a 12 KHz excitation, and the 
lower is for 13088 KHz. 
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When sample C is excited with sine waves applied 
abruptly to the transducer, the compression driver 
responded as depicted in Figure 18. One of the testing 
frequencies was 12 kHz, because this frequency does 
not give sidebandings when it is steadily applied to the 
unit. The frequency of 13088 Hz which responded with 
sidebandings was applied too. Care was taken to record 
only the transient response and not the steady state 
signal. Observe at the bottom of the figure the spectral 
response of the speaker to the sidebanding frequency, 
which gives a noisy left side lateral hump in the region 
of one of the sidebands of the steady state. The signal of 
12 kHz only responds with a single, but noisy, base 
spectral line. 
 
The one dimensional bilinear oscillator is reported 
theoretically and practically by J.T. Anderson and 
others [36] who worked exciting a single beam. 
E.L.B.Van der Vorst  [37] reported the response of a 
nonlinear system giving a subharmonic response, a 
quasi-periodic response or a chaotic response. It refers 
to a mechanical system made up of a cantilever beam to 
which a nonlinear element has been placed in the center.  
The nonlinear element is what the author has named a 
“one sided spring”. R.S. Chancellor and others [38] 
published measurements of an excited beam with a 
mechanical stop on top of the flexible beam. 
 
P.V. Bayly [39] defines a weakly bilinear oscillator as 
an oscillator that behaves linearly in each of two 
regions, but which has at least one parameter which 
differs by a small amount in one region. The parameter 
is discontinuous at the boundary between regions. 
Figure 19 depicts a bilinear oscillator with its motion 
constraint to a line. The oscillator responds to the 
analytic expressions of (8): 
 
d2 x / dt2 + �0

2 x = A sin (�*t),  x�0    (8a) 
 
d2 x / dt2 + (�0

2 +�)*x = A sin (�*t),  x<0   (8b) 
 
Being:  
x: the displacement 
�0: the natural circular frequency for the zero and 
positive displacement 
�: the forced circular frequency  
�: the square of the detuning circular frequency (being 
small compared with �0

2) 
A: the amplitude of the external forcing function.  
 

For an oscillator as the one shown in Figure 19 
governed by the equation (8), it is reasonable to have 
sidebanding responses as the system’s natural frequency 
is switching when the mass crosses zero displacement. 
Observe how in this bilinear oscillator of the equation 
(8), just as in Mathieu´s formula, it separates to the form 
of a linear single degree of freedom system on the 
stiffness terms. In a compression driver the light 
diaphragm is submitted to a heavy load and it can 
bounce over the air in the phase plug gap as a bilinear 
oscillator. 
 

 
 
Figure 19: Bilinear oscillator constrained to move along 
a single line. 
 
 
In reference [40], Soliman and Gonçalves demonstrates 
the steady state instabilities that may occur in shallow 
spherical shells. These instabilities include jumps to 
resonance, subharmonic periodic doubling bifurcations, 
cascades to chaos, etc. The work of Amabili and 
Païdoussis [41] summarizes 356 references that deal 
about shell’s dynamics, including the nonlinear 
phenomena. 
 

 

Figure 20: Response of sample D with spontaneous 
sidebanding in the half frequency range of the excitation 
signal. Transducer is excited by a sine wave of 12048 
Hz. Sample D has an annular V-shaped diaphragm. 
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4.2. A Spectral Fractal Structure 
 
Sample D is a coaxial compression driver. The 
diaphragm is a polyester V shaped ring. The coil has a 
diameter of 90 mm, and the moving assembly is 
suspended by a polyester bellows suspension. The 
transducer nominal impedance is 8 �. Only the mid-
range transducer of the coaxial set was tested. 
Measurements were taken with the microphone on the 
near field of the transducer’s throat. 
 
The sample showed a spontaneous sidebanding response 
in several spectral regions. A remarkable characteristic 
of this sample is the presence of spontaneous 
sidebanding in the half frequency region of the 
excitation. Figure 20 depicts the response of sample D 
to a sine tone of 12048 Hz with an amplitude of 3.7 
volts and with a rather defined spectral structure on its 
base. A significant response of the compression driver 
to the single excitation frequency is the spontaneous 
sidebanding developed at half the excitation frequency. 
This response is a sort of combination of the 
subharmonic and bilinearity character of the unit for this 
specific excitation frequency. 
 

 

Figure 21: Spectral fractal structure of sample D. 
Excitation is a sine wave of 15104 Hz. The frequency 
analysis covers the full transducer range. 
 
 
One of the testing sine signals with a frequency of 
15104 Hz gave a spontaneous wide band sidebanding. 
Figure 21 depicts the spectrum response to this single 
frequency. As most individual peaks of this figure 
exhibit several spectral lines, a zoom-in of some peaks 
will detail the internal spectral structure. The zone of 12 
kHz is one of the broadest, and was analyzed with a 
higher resolution. Figure 22 depicts the spectral 
structure of this region. A new closer sidebanding is 
visible with some spurious peaks. As the central peaks 

depicted broad bandwidth at its bases, a new finer 
analysis was performed. The result is in Figure 23, 
where again the sidebanding is evident. The process is 
not stable enough, as the moving assembly is light 
weight, to capture the next spectral structure, and a finer 
spectral definition needs longer time record in the 
analyzer. 
 
This repetitive structure is called a fractal structure or 
self similarity structure. M. R. Schroeder [42] and W. 
Lauterborn and others [43] explained this concept and 
they included acoustic examples. While the 
compression driver is radiating an acoustical fractal 
structure, some parts or the whole moving assembly are 
probably bouncing in such a way that self similar 
motions are being described. These motions are nearly 
impossible to enhance in the time domain, but are 
clearly visible in the frequency domain depicted on the 
fractal spectra. 
 

 

Figure 22: Spectral fractal structure of sample D 
(second generation). Excitation is a sine wave of 15104 
Hz. The zoomed analysis is centered at 12 kHz. 
 
 
The bilinearity is a severe nonlinear condition. One 
characteristic of the high nonlinear systems is that they 
are very dependent on the initial conditions (initial 
rebound). This sample D showed a low level test 
repetition. This is reasonable because the repetition of 
the test does not guarantee to have exactly the same 
initial conditions. Besides, and for the same reasons, we 
obviously cannot be sure of finding the same results 
when testing the unit with its axis in a horizontal or 
vertical position. The transducer’s temperature also 
changes the contact stiffness. When the laboratory’s 
temperature decreases just 6 degrees centigrade, it is 
necessary to shift the generator frequency from 15104 
Hz to 15257 Hz to obtain the fractal structure tuning. 
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Figure 23: Spectral fractal structure of sample D (third 
generation). Excitation is a sine wave of 15104 Hz. The 
frequency analysis is a zoom-in of the spectral peak in 
the 12 kHz range shown in Figure 22 
 
 
5. CONCLUSIONS 

 
Two of the four tested samples showed subharmonic 
distortion. The analysis of the time domain response 
illustrates the synchronization process between the 
electric applied signal and the subharmonic acoustic 
output. Modal analysis of the moving assembly 
demonstrates that there are various mode shapes that 
can cause the parametric or autoparametric (internal 
resonance) excitation and response of the compression 
drivers. When we try to find the causes of this 
distortion, apart from the diaphragm dynamics, the coil 
and former’s dynamics and the suspension’s dynamics 
must be taken into account as well. 
 
Two of the four samples do not exhibit subharmonic 
responses but showed spontaneous sidebanding. This 
sidebanding response is attributed in literature to 
bilinearity. The bilinearity can be caused by the 
compression process itself, because a light and weak 
diaphragm must compress air in a shallow volume and 
in a spectral range where the diaphragm has several 
natural frequencies.  
 
One of these two samples responded with a self 
similarity motion or fractal pressure response. These 
spectral structures can be found in theoretical dynamics, 
formal laboratory experiences and in machinery 
dynamics, but very seldom [6] in the field of acoustic 
transducers. 
 
It is difficult to classify these subharmonic distortions in 
a systematic manner, which is not the case with the 
harmonic and intermodulation distortions we are used to 
working with. The assessment of the influence of these 

distortions in the final acoustic performance of the 
transducer seems to be at a very early stage. 
 
 
6. ACKNOWLEDGEMENT 
 
The author is grateful to Mr. W. Klippel, for having 
provided the paper of reference [6]. 
 

7. REFERENCES 
 
[1] M. Faraday, On the forms and States Assumed by 
Fluids in Contact with Vibrating Elastic Surfaces, 
Phylosophical Transactions of the Royal Society, 
London, 1831, Vol. 42, pp 319-340. 
 
[2] G. Floquet, Sur les equations différentielles linéaires 
à coefficients périodiques, Ann. Sci. Éco. Norm. Sup, 
Vol. 12, pp 47-89, 1883. 
 
[3] P. O. Pedersen, Subharmonics in Forced Oscillations 
in Dissipative Systems. Part I, Journal of the Acoustical 
Society of America, Vol. 6, April 1935; and Part II, Vol. 
7, July 1935. 
 
[4] H. F. Olson, Acoustical Engineering, Professional 
Audio Journals, Inc., Philadelphia, Pennsylvania 1991. 
First publication by D.Van Nostrand Co. Inc. 1957. 
 
[5] W.J. Cunningaham, The Growth of Subharmonic 
Oscillations, Journal of the Acoustical Society of 
America, Vol. 23, Number 4, pp 418 – 422, July 1951. 
 
[6] J. K. Hubbard, Subharmonic and Nonharmonic 
Distortions Generated by High Frequency Compression 
Drivers, AES 6th International Conference: Sound 
reinforcement, May 1988. 
 
[7] D.W.Jordan and P.Smith, Nonlinear ordinary 
differential equations, Oxford University Press, 1977. 
 
[8] A.H. Nayfeh and D. T. Mook, Nonlinear 
Oscillations, John Wiley and Sons, 1979. 

[9] R. Dufour and A. Berlioz, Parametric Instability of a 
Beam Due to Axial Excitations and to Boundary 
Conditions, Journal of Vibrations and Acoustics, Vol. 
120, April 1998. 

[10] H.Yabuno, Y Endo, N. Aoshima, Stabilization of 
1/3 Order Subharmonic Resonance Using an 



Bolaños Subharmonics in Compression Drivers
 

AES 118th Convention, Barcelona, Spain, 2005 May 28–31 

Page 15 of 16 

Autoparametric Vibration Absorber, Journal of 
Vibration and Acoustics, Vol. 121, July 1999. 

 
[11] P.H.Nguyen and J.H.Ginsberg, Vibration Control 
Using Parametric Excitation, Journal of Vibration and 
Acoustics, Vol. 123, July 2001. 
 
[12] S.A. Nayfeh and A. H. Nayfeh, Energy Transfer 
From - High to Low – Frequency Modes in a Flexible 
Structure via Modulation. Journal of Vibration and 
Acoustics, Vol. 116, April 1994. 
 
[13] A. H. Nayfeh and D.T. Mook, Energy Transfer 
from High – Frequency to Low – Frequency Modes in 
Structures, Journal of Vibration and Acoustics, Vol. 
117, June 1995. 

[14] A.Vakakis and others, Normal Modes and 
Localization in Nonlinear Systems, Wiley, New York 
1996.  

[15] D.A. Barlow, G.D.Galletly and J. Mistry,  The 
Resonances of Loudspeaker Diaphragms, Journal of the 
Audio Engineering Society, October 1981. 
 
[16] N. Sakamoto and others, Loudspeaker with 
Honeycomb Disk Diaphragm, Journal of the Audio 
Engineering Society, October 1981. 

[17] K. Suzuki, and I. Nomoto, Computerized Analysis 
and Observation of the Vibration Modes of a 
Loudspeaker Cone, Journal of the Audio Engineering 
Society, March 1982. 
 
[18] T.Yamamoto and others, High Fidelity 
Loudspeakers with Boronized Titanium Diaphragms, 
Journal of the Audio Engineering Society, December 
1980. 
 
[19] I. Aldoshina and others, Theoretical and 
Experimental Analysis of Nonlinear Parametric 
Vibrations of Electro-dynamical Loudspeaker 
Diaphragm, 104th Convention of AES, May 1998. 
 
[20] I. Aldoshina and others, An Advanced Model of 
Nonlinear Parametric Vibrations of the Electrodynamic 
Loudspeaker Diaphragm. 106th Convention of AES, 
May 1999. 
 

[21] D. Bie, Vibration Resonances of a Titanium 
Loudspeaker Diaphragm. 104th AES Convention, 
Amsterdam May 1998.  
 
[22] F. M. Gardner, Phaselock Techniques, J.Wiley and 
Sons, April 1979. 
 
[23] A. B. Pippard, The Physics of Vibration, 
Cambridge University Press, 1979. 
 
[24] A. Pikovsky, M. Rosenblum and J. Kurts, 
Synchronization, a universal concept in nonlinear 
sciences, Cambridge University Press, 2001. 
 
[25] H.L.Neal and A. H. Nayfeh, Response of a 
Parametrically Excited System to a Nonstationary 
Excitation, Journal of Vibration and Control, Vol. 117 , 
nº1, 1995. 

[26] A. Duncan, The Analytic Impulse, Journal of the 
Audio Engineering Society, Vol. 36, Nº 5, May 1988. 
 
[27] N. Thrane, The Hilbert Transform, Technical 
Review , Edited by Brüel & Kjaer, Nº 3,  1984. 
 
[28] H. Goldstein, Classical Mechanics, Addison 
Wesley Publishing Co., 1980. 
 
[29] D. K. Campbell (editor), Chaos, Soviet – American 
Perspectives on Nonlinear Science, Edited by the 
American Institute of Physics, New York 1990. 

[30] K.Ogata, Modern Control Engineering, Prentice 
Hall  Inc., 1970. 

[31] H. T. Davis, Introduction to nonlinear differential 
and integral equations, Dover Publications 1962. 

[32] R.R. Erickson and B.T. Zinn, Modeling of finite 
amplitude acoustic waves in closed cavities using the 
Galerkin method, Journal of The Acoustical Society of 
America, Vol. 113, nº 4 April 2003. 

[33] N. W. McLachlan, Loudspeakers: Theory, 
Performance, Testing and Design, 1934, Oxford 
University Press.  
 
[34] F. Fahy, Sound and Structural Vibration, Radiation 
Transmission and Response, Academic Press, 1985. 
 



Bolaños Subharmonics in Compression Drivers
 

AES 118th Convention, Barcelona, Spain, 2005 May 28–31 

Page 16 of 16 

[35] M.C.Junger and D. Feit, Sound, Structures, and 
Their Interaction, Acoustical Society of America, 1993. 
First edition in 1972. 
 
[36]  T. J. Anderson, B. Balachandran and A. H. 
Nayfeh, Nonlinear Resonances in a Flexible Cantilever 
Beam, Journal of Vibration and Acoustics, Vol. 116, 
nº4, 1994. 
 
[37] E.L.B.Van der Vorst and others, Vibration Control 
of Periodically Excited Nonlinear Dynamic Multi-dof 
Systems, Journal of Vibration and Acoustics, Vol. 117, 
nº1, 1995. 
 
[38]  R. S. Chancellor, R.M. Alexander, S. T. Noah, 
Detecting Parameter Changes Using Experimental 
Nonlinear Dynamics and Chaos, Journal of Vibration 
and Acoustics, Vol. 118, nº3, 1996. 
 
[39]  P. V. Bayly, On the Spectral Signature of Weakly 
Bilinear Oscillations, Journal of Vibration and 
Acoustics, Vol. 118, nº3, 1996. 
 
[40] M. S. Soliman and P.B. Gonçalves, Chaotic 
Behaviour Resulting in Transient and Steady State 
Instabilities of Pressure – Loaded Shallow Spherical 
Shells, Journal of Sound and Vibration, vol. 259 (3), 
2003. 
 
[41]M. Amabili and M. P. Païdoussis, Review of 
Studies on Geometrically Nonlinear Vibrations and 
Dynamics of Circular Cylindrical Shells and Panels, 
with and without Fluid-Structure Interaction, Applied 
Mechanics Review, Vol. 56 (4), July 2003. 
 
[42] M. R. Schroeder, Self–Similarity and Fractals in 
Sciences and Art., Journal of the Audio Engineering 
Society, Vol. 37, October 1989. 
 

[43] W. Lauterborn and U. Parlitz, Methods of Chaos 
Physics and Their Applications to Acoustics, Journal of 
Acoustical Society of America, Vol. 84, nº 6, December 
1988. 

[44] F.F. Eirich, Spontaneous Sidebanding in High 
Speed Rotordynamics, Journal of Vibration and 
Acoustics, Vol. 114, October 1992. 

 

 

 


