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ABSTRACT 

The most important modes for a direct acoustic radiator are the axial modes, which are axisymmetric circular modes 
of a high temporal and spatial coherence [38]. Numeric modal analysis and measurement of the free and forced 
accelerations and displacement responses of the moving assemblies are performed to establish the main modes 
involved in the acoustic response. The axial modes had been identified by measurements (within the intrinsic degree 
of uncertainty). The experiences show evidence of clearly nonlinear normal modes (NNM) [18] and [19], justifying 
the high complexity of mode finding in loudspeaker cones. Based on the axial modes, a three degrees of freedom 
model is proposed, where only one of the masses is externally forced. The modal analysis of a double cone speaker 
has been treated in short form. 

 

1.  PURPOSE AND  INTRODUCTION 

The intention of this paper is to find some relevant 
peaks of the acoustic frequency response and 
harmonic distortion of woofers by means of motion 
measurements and numerical modal analysis of the 
complete moving assembly of these transducers. If 
the loudspeaker designer determines the main modes 
of the moving assembly, both its frequencies 
(eigenvalues) and their mode-shapes (eigenvectors), 

it will be easier to fulfill the design goals of the 
project. 

The problem of waves in cones has been treated 
thoroughly by Y. P. Guo [1] who explained why the 
waves have larger amplitudes near the apex than in 
the rest of the cone, based in the principle of energy 
conservation. The same author in [2] deals with the 
fluid load influence on the conical shells, in the paper 
Y.P. Guo explains that compressional and flexural 
waves are significantly affected by fluid loading. For 
compressional waves, fluid-loading short circuits the 
cutoff phenomenon. In the loudspeakers field an 
intense work has been done with respect to the 
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dynamic response of the cones and the acoustic 
radiation of the diaphragms, see for example the 
references [3] and [4]. Frankort [3] completed an 
entire experimental job and he reported “there is a 
great variation in velocity amplitudes at the inner 
edge of the cone”, but essentially, the author did not 
pay enough attention to the voice coil. Kaizer [4] did 
the job numerically and he said “as the frequency is 
increased the transverse velocity of the cone surface 
becomes non – uniform since the amplitude of the 
vibration increases towards large radii”. Despite the 
fine approach work he did, the voice coil and former 
influence were not treated profoundly enough. 

 
However the importance of the coil on the moving 
assembly dynamics was earlier reported by N. W. 
McLachlan [5]. The author mentioned the coil 
dynamics as well as the cone; he dealt with what he 
calls “optimum mass of moving coil”, “influence of 
coil mass on acoustic output and frequency of 
vibration”, etc. McLachlan also referred to the radial 
modes and symmetrical modes in the cone. These 
symmetric modes are relevant in the transducer 
performance. In F. V. Hunt’s book [6] the author 
refers to R. L. Wegel of Western Electric (who held 
the U.S. patent nº 1926888 in 1924) and says that 
Wegel while observing the queer motion of a too long 
driving link in the motor mechanism of a primitive 
loudspeaker claimed that “to describe that motion in 
terms of only six degrees of freedom would be a gross 
oversimplification”. Moreover this oversimplification 
assumes the knowledge of the rocking 
eigenfrequencies of the speakers, which is often not 
the case. By means of the finite element method, 
Shindo and his colleagues [7] were able to study the 
influence of the voice coil on the acoustic response. 

The present work has been done with fifteen inch 
woofers for two main reasons. First the size and 
weight of the moving assembly allow an 
experimental approach. On the other hand the 
elasticity of the interface cone and former, together 
with the cone and coil masses give moderately low 
natural frequencies, which can still be measured with 
standard instruments available in laboratories. The 
experimental work has been done with straight cones 
and in the small amplitude signal range. The problem 
of motion in the large is beyond the scope of this 
paper. 

2. BASIC MODE SHAPES ON MOVING 
ASSEMBLIES 

Whereas in a uniform thin flat plate, small-amplitude 
bending waves and in-plane waves are uncoupled and 
can propagate independently; in a curved plate the 
different type of waves are coupled.   

There are two important modes in a cone, see for 
example, Barlow [8] and Krüger [9]: 

a) Radial modes, McLachlan called them bell modes 
[5]. Radial modes consist in the sectors of the cone 
moving in opposite directions. The radii between the 
sectors are antinodes. Acoustic cancellation takes 
place by lateral movement of air across the face of 
the cone 

b) Circular modes, McLachlan called them 
symmetrical modes [5]. These modes consist in the 
motion of the cone with ring shape with antinodes 
between the concentric rings. These modes are 
strongly coupled to the voice coil by the axial motion 
of it, and are the cause of relevant peaks on the 
acoustic response. 

The most common terminology [10] is the 
classification of the modes according to the number 
of nodal circles and nodal radii (on some texts 
referred to as meridians) the cone has (NC, NR). So 
that any radial mode has NC equal to zero and any 
circular mode has NR equal to zero as well. Two of 
these modes are depicted in Figure 1. The two lowest 
element rows of the figure belong to the coil while 
the two element rows on top of it are the former. 
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Figure 1: Radial mode (top) and circular mode 
(bottom) on a moving assembly of a direct radiator.  

 

In a cone near the apex, the in-plane forces 
(membrane forces) dominate the response, while near 
the outer diameter the bending flexibility is 
significant. Despite the importance of the inertia of 
the voice coil and the former compliance, relevant 
deformations are on the cone and in the outer 
suspension as well. 

Besides these circular and radial modes of the cone, 
the addition of the voice coil – former set to the cone, 
and the addition of the two suspensions, configures a 
more complex situation with other relevant modes 
than are dealt with in this paper This offers a better 
understanding of the moving assembly dynamics. 

2. 1.  Main Axial Modes 

If we apply  sufficient DC voltage to the voice coil in 
such a way that the suspension stiffness of the 
speaker reaches the practical infinite value, at the end 
of the negative stroke; the cone, former and coil set 
trend to stretch axially as depicted in the Figure 2. In 
the figure, we can see that there are two regions at 
which the cone has the maximum deformation. A 
high strain is exerted circumferentially on the cone 
body near the rim edge. The figure illustrates that the 
neck deforms as well. Whereas the outer cone ring 
deforms basically axially and bending, the former 
strains bending, and the inner cone ring strains both 
axially and bending. When inertia forces, the 
damping forces and the elastic forces, together with 
the external forces, act simultaneously in a linear 
moving assembly, while the speaker is excited 
axially; the moving assembly will exhibit, essentially, 
two regions acting as a spring and three acting as a 
mass. The deformed regions of the figure are the 
springs of the body, one is near the rim and other is in 
the neck region, generally the stiffness of the neck is 
different than the one of the rim zone.  The masses 
are the bodies which are separated by the springs. 
Axial motions are the most temporal and space 
coherent motions [38] of the moving assembly giving 
maximal acoustic radiation. 

 

                              Figure 2: Strain of the moving assembly of a direct radiator after a static stretching process. 
    

 

It is necessary to take into account that the large 
static stretching process exhibited in Figure 2 shows 
the neck stiffness and the outer cone stiffness as well, 

but these compliances act also when the moving 
assembly is moving in the small which is the aim of 
the paper. The importance of the neck’s stiffness was 
observed in 1977 by J.M. Kates [11] who described 
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the response of a loudspeaker with a mechanical filter 
(a spring) in this specific place. In 1983 A.J.M. 
Kaizer and W. Kopinga [12] patented a speaker with 
this device installed.  

Modal analysis of thin and slender bodies by the 
finite element method is widely reported in literature; 
see for example the references [13] and [14]. Special 
interest has been given to axial modes by P. Larsen 
[15], despite the author not calling these modes 
“axial” and he does not explain why these modes are 
relevant. 

From now on when we talk about the isolated moving 
assembly we will be referring to the one which is 
suspended by axial very soft suspensions. When 
performing linear modal analysis on an isolated 
moving assembly by finite element method there are 
two main axial modes. One is the axial mode in 
which the most strained spring is on the neck of the 
body assembly. This mode is depicted in Figure 3. 
Observe how the complete cone swings up and down 
bending on its inner edge or circumference, and 
observe how the former stretches and shortens in a 
circular fashion. From now on this mode will be 
called the neck axial mode. An equivalent bulk three 
degree of freedom system is inset in the figure. This 
equivalent system has the same coil mass and the 
same total cone mass. The equivalent system of the 
inset has a neck stiffness which is smaller than the 
cone stiffness near the rim. The other axial mode is 
the one at which the most strained spring is that of 
the outer cone near the rim. The mode is depicted in 
Figure 4. In the figure the sharing of masses of the 
inner cone and outer cone with respect to the total is 
taken arbitrarily. Observe in the figure how the outer 
cone of the isolated moving assembly “flaps” up and 
down. This mode will be called the “near rim” axial 
mode from now on. The equivalent bulk system 
depicted in the figure shows a motion in antiphase of 
the inner and outer cones, and a very small motion of 
the coil in antiphase with respect to the inner cone. If 
we swap the stiffness of the two axial springs of the 
moving assembly, then the first mode found will be 
the one of Figure 4 and the second will be the one 
depicted in Figure 3. 

 

Figure 3: Neck axial mode of the moving assembly. 
Suspensions are omitted for clarity. 

 

Only one of these masses (the coil) is forced by the 
electromagnetic force, the other two are linked only 
by their mechanic stiffness and associated damping. 
A more realistic approach to the speaker 
modelization in axial motion is a three degrees of 
freedom system with the inner and outer cone masses  
linked by a spring and damper, and the inner cone 
mass is linked to the coil by the neck stiffness (with 
its associated damper). Only the coil’s mass is 
submitted to external forces. This subject will be 
addressed further with more detail. 

2. 2. Main Suspension’s Modes and Basic 
Interactions with the Axial Modes. 

In 1998 D. Bie [16] reported a global analysis of the 
motion of a diaphragm and the associated suspension 
in a single suspension transducer, using both numeric 
analysis and experimental methods. In 2000 D. 
Henwood and his Colleagues [17] published an 
experimental work dealing with the same topic, 
where the interaction of a loudspeaker cone and the 
surround is shown evidently and the authors 
recognized it as of complex interpretation. 
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Figure 4: “Near rim” axial mode of the moving 
assembly, suspensions are omitted in the Figure. 

 

There are specific suspensions modes to deal with. 
The main axi-symmetric motions of the suspension 
are the concentric-circular mode (circular accordion 
shape motion) and the in-phase-axial mode (flapping 
motion). The concentric-circular mode consists of 
concentric in-phase radial motions of all the elements 
that make up the suspension. The apparent 
suspension’s motion occurs, in the suspension’s 
plane, which is perpendicular to the transducer’s axis. 
Figure 5 illustrates this kind of motion for a half roll 
suspension. The concentric waves swing back and 
forth in concentric circles between the cone rim and 
the speaker frame. The concentric-circular modes are 
in spectral regions which are very dependent on the 
suspension shape and size. Often the surrounds of 
various rolls, have this type of mode at frequencies 
much higher than the half roll suspension. Figure 6 
depicts the same type of mode in a two rolls 
suspension, the rest of the moving assembly is 
omitted on the figures for clarity. In both figures the 
suspension motion waving concentrically back and 
forth is visible. 

 

 

 

Figure 5: Suspension’s concentric-circular-mode 
(accordion shape). The suspension waves outwards 
and inwards radially. The model is a half roll 
surround. 
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Figure 6: The same mode shape of Figure 5 
(accordion shape) for a two roll surround. 

 

While a flat suspension (or a real bellows suspension) 
is in the first axial-mode (flapping mode), the median 
suspension circumference is an antinode with all 
points moving axially in-phase. The outer 
suspension’s circumference is a node (restrained by 
the frame) and the inner suspension’s circumference 
is a node contour line or near a node contour line as 
well. Other axial-modes (flapping modes) exist in the 
suspension, for brevity they are not treated here, but 
they consist of suspension standing waves with an 
integer number of half waves between the inner and 
outer suspension’s circumference. Figure 7 depicts 
the main suspension’s axial-mode for a flat 
suspension, where the two external circular element 
rows belong to the suspension. The remaining 
elements belong to the cone.  Figure 8 shows the 
same mode for a half roll surround. The natural 
frequency at which the concentric-circular-mode 
takes place, for the half roll suspension depicted in 
Figure 5, is lower than the natural frequency at which 
this suspension exhibits flapping. An almost pure 
flapping mode can be obtained for certain 
eigenvalues where the suspension moves in-phase 
and the rest of the body assembly yields at rest. This 
circumstance is accomplished frequently in several 
transducers. 

 

 

Figure 7: Axisymmetric suspension’s mode which 
motion is in the transducer’s axis (flapping-mode) for 
a flat surround. The surround has two rows of 
elements. 

 

 

 

 

Figure 8: The same mode shape of Figure 7 (flapping 
mode) for a half roll surround.  

 

We have dealt with axial modes of isolated moving 
assemblies and the basic suspension modes as well. 
However the real moving assemblies are suspended 
by two elastic devices. The spider may interact with 
the body assembly basically when the neck is 
swinging. In Figure 9 the same moving assembly that 
exhibited the neck’s axial mode is depicted but with a 
spider attached to the body. It is evident in the figure 
that both bodies experience a synchronized motion. 
The natural frequency found is a bit lower than the 
one of a moving assembly suspended by an infinite 
soft suspension device. This indicates, basically, a 
small overweight applied to the neck. For simplicity 
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the spider of the figure has been modelled flat, which 
gives reliable results for very elastic suspensions if 
the motions are in the small. Other spider shapes 
perform similarly to the one of the figure. 

 

 

Figure 9: Interaction between the flapping mode of 
the spider and the neck of the moving assembly. 

 

The surround has an even higher interaction with the 
moving assembly than the spider has. The surround 
may interact with the cone rim axial mode as well, 
lowering the natural frequency too. Figure 10 depicts 
the mode shape when both bodies are joined. As in 
Figure 7, the suspension is designed with two rows of 
elements in the model. Observe how the cone rim 
flaps up and down while the suspension is flapping as 
well. The inset of the figure shows clearly the edge of 
the cone rim. 

 Moreover, the suspension may interact with the 
moving assembly neck giving rise to a compound 
mode. This mode shape is depicted in  Figure 11, 
were we can see how the neck’s motion and the 
suspension flapping are linked. Observe in the figure 
the edge of the cone at the former side, marked with 
an arrow. These behaviours are for undamped linear 

systems, which is, obviously, a necessary 
simplification.  

 

 

 

Figure 10: Interaction between the flapping mode of 
the surround and the rim of the moving assembly. 
The suspension is flat and has two rows of elements. 
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Figure 11: Interaction between the flapping mode of 
the surround and the neck of the moving assembly. 
The suspension is flat and has two rows of elements. 

 

 
3. MEASUREMENTS ON A FIFTEEN INCH 

WOOFER AND NONLINEAR NORMAL 

MODES 

In order to simplify the moving assembly dynamics 
and keep the moving assembly neck clear, the dust 
cap was not attached to the cone. For this purpose the 
experimental device was a 15 inch woofer which has 
a cone of 48 grams and a coil whose weight is 37.3 
grams. The cone is paper made and has 12 

circumferential shallow ribs on its body. The coil’s 
diameter is 100 mm. The outer suspension is a two 
and a half roll cloth suspension.  

The acoustic response of the chosen unit and the 
harmonic distortion of the second and third order are 
depicted in Figure 12, we will return to this figure 
later on in the text. The vectorial impedance curve is 
depicted in Figure 13, where besides the main 
resonant frequency a small hump around 604 Hz is 
visible. Amplitude oscillations below the main 
resonance are due to the fact that the sine sweep does 
not cover the very low frequencies. 

 

 
Figure 13: Vectorial motional impedance of the 
tested unit. 

 

 

Figure 12: Acoustic free field response of the 15 inch woofer and 2nd and 3rd order harmonic distortion of the unit. 
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3. 1. Acceleration Free Response of the 
Moving Assembly 

In order to perform free response measurements at 
medium frequencies, very small accelerometers were 
glued to the cone. The accelerometer with the 
soldered cable has a total weight of only 0.4 grams. 
For this purpose a pair of bimorph ceramic elements, 
working in bending, were glued to the cone at 
different ribs heights. The accelerometers were 
installed for each measurement in the same cone rib, 
at the end of diametral lines, providing weight 
balance to the measured cone. Figure 14 depicts a 
moving assembly  

and the measurement points A and B. The pair of 
measuring points A, which belong to the same 
diameter and rib, are 27 mm away from the inward 
cone rim.  This site can be assigned to the outer cone. 
The pair of measuring points B, which belong to the 
same diameter and rib, are 67 mm away from the 
inward cone rim. This site can be assigned to the 
inner cone. The free response of the moving 
assembly was tested applying axial forces to the 
isolated body at the coil at its free side (the bottom of 
the photograph). For this purpose a small lightweight 
wood cross bar was attached diametrically to the coil 
at the free side; this provides a simple no invasive 
form to apply axial forces to the whole isolated 
moving assembly. 

 

Figure 14: Measurement sites A and B for a pair of accelerometers on each site. Measurement site A corresponds to 
the outer cone, site B is in the inner cone. The moving assembly is suspended by its spider. 

 

The responses found are level dependent, they 
depend on the initial conditions, and the spectral 
signature depicts clear nonlinear shapes [22]. 
Responses when the input force was applied 
compressing the moving assembly springs are 
different than those found for input forces applied 
extending the springs. 

In order to find results as close as possible to the 
complete unit, measurements were taken testing the 
complete moving assembly with its inner and outer 
suspensions. The results obtained for inputs that tend 
to extend the moving assembly springs have much 
better spectral appearance (linearity) than those that 

shorten them. This is reasonable because when the 
force compresses the springs, most of the applied 
energy is absorbed by the first axial normal mode of 
the speaker (which is the regular speaker resonance). 
This is due to the higher elasticity of the suspensions 
than the neck and the near rim springs have. When 
the lower mode is highly excited the higher order 
modes are much less activated or excited. 

Figure 15 depicts the spectral simultaneous responses 
measured by two accelerometers at measurement 
points A. Figure 16 depicts the spectral simultaneous 
responses measured by two accelerometers at site B. 
The dynamic range of these graphics is 40 dB as 
indicated in the display set up. Despite the full scale 
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and the graphics cursors being in millivolts their 
magnitudes are calibrated in dB with respect to a 
common arbitrary reference.   

 

Figure 15: Acceleration responses of the two light 
weight accelerometers on site A (outer cone). 

 

 

Figure 16: Acceleration responses of the two light 
weight accelerometers on site B. 

 

We conjecture that these responses are clearly non 
linear responses. Observe how in the figures the 
accelerometer outputs do not deliver the same 
signals. The simultaneous spectra are rather different, 
both for measurement site A and B. The outer cone 
responds with a spectrum which is much more 
complex than the inner cone. This is reasonable 
because the inner cone is closer to the input force 
than the outer cone, and the outer suspension adds 
additional damping to the outer cone. The inner cone 
(measurement points B and Figure 16) respond with 
peaks at 944 Hz and 452 Hz approximately. Observe 

how these peaks have closeness to the ratio 2:1. The 
proximity of these frequencies to the 2:1 ratio is close 
enough for a high damped system which is the 
moving assembly materials. When the free response 
of a system delivers natural frequencies close to the 
ratio 2:1 those systems are said to have an internal 
resonance of the type two-to-one, see these 
definitions in [21]. These frequencies are probably 
nonlinear normal frequencies of the nonlinear normal 
axial modes. In spite of the response in the outer cone 
area, (measurement points A, and Figure 15), being 
more complex than the inner cone area both peak at 
930 Hz and 452 Hz and these are clearly visible as 
well. However there are new raising evolving 
spectral regions at 1220 Hz and 680 Hz 
approximately, which has the same rough frequency 
ratio of 2:1. The peak of 1224 Hz seams to be the 
second axial mode. The proximity to the outer 
suspension, which has several modes as a physic 
subsystem as we saw in paragraph 2.2, must be taken 
into account. Observe that the second harmonic 
acoustic distortion curve H2 (Figure 12) has these 
two peaks at 950 Hz and 1250 Hz respectively, and 
the acoustic frequency response has important peaks 
at 1000 Hz and 1250 Hz as well. Conjectures are 
common on the nonlinear field; see for example [24], 
[25] and [26]. At high frequencies conjectures in 
modal analysis are usual as well; see for example 
reference [37] where the author says that “much 
experimental work has gone unpublished, largely due 
to tenacious questions regarding statistical 
reliabilities, reproducibilities and fluctuations”. In 
references [22] and [23] for example, dealing with 
nonlinearities, the word signature is used to explain 
qualitative results.  Moreover, when concerned with 
engineering results, in highly damped nonlinear 
devices of several degrees of freedom, the necessity 
of conjecture is even higher.  

3. 2. Nonlinear Normal Modes (NNM) on the 
Moving Assemblies 

A system which responds as Figure 15 and 16 
depicted, obviously, does not fulfill the superposition 
principle, and therefore the definition of a linear 
normal mode. In accordance with the author 
Rosenberg [18] normal mode vibrations of an 
autonomous (free) multi degree of freedom system 
are “the vibrations-in-unison” of the particles of this 
system. This implies that while the system is in a 
normal mode all masses of the body move in 
synchronization, attaining their maxima, equilibria 
and minima at the same instants of time. If the system 
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we are dealing with is linear, the motion of all the 
masses follows a harmonic function. For a linear 
system undergoing a normal mode, as the response is 
harmonic, the relation of amplitudes between two 
elected points of the system has a constant value. 
This is due to the fact that each motion is a harmonic 
function that can change only in the amplitude. In 
literature those modes are called similar normal 
modes. 

If a vibrating motion of a body is in unison it does 
not describe harmonic functions in all masses. In 
contrast, the relation between the amplitudes of two 
points, elected randomly, is not constant. In this case 
the normal mode is called non-similar. Many 
nonlinear normal modes (NNM) are non-similar. 
Reference [19] explains that in symmetric two 
degrees of freedom systems and homogeneous 
systems of many degrees of freedom, the modes are 
similar, independent of the amount of nonlinearity 
and independent of the amplitude of the responses as 
well. 

An important fact is that in a linear system the 
number of eigenvalues equals the number of degrees 
of freedom, but this assertion does not hold for strong 
nonlinear systems, where, generally, the number of 
eigenvalues is larger than the number of degrees of 
freedom. This point is evident in the measurements 
made in the moving assemblies tested. 

The theory about how to solve nonlinear systems is 
vast and beyond the scope of this paper, see for 
example the books of A. Nayfeh [20] and [21]. Here 
in this paper the interest is focused on the 
interpretation of the experimental results. Moreover, 
for example, experimental results obtained in moving 
assemblies [22] when they are observed and analyzed 
as nonlinear normal modes (NNM) may have 
interpretation, although when observed and analyzed 
using the linear theory they do not.  

The study of the mathematical structure of NNM has 
acquired an important advance, but the practical 
experiences have been done, basically, with simple 
devices and in laboratory conditions. Most of the 
experiments are done with bars, strings, plates and 
simple frame structures. For example, the paper of 
[23] deals with the transference of energy through the 
modes and reports real measurements in a beam. In 
this paper the author uses the word “signature” for a 
modal interaction, as the author of the reference [22] 
does for the spectral shape for moving assemblies. 

Much attention is paid to damped systems by A. 
Vakakis and his colleagues [24]. 

The phenomena reported in [24] are very significant, 
since a necessary condition for the execution of 
certain energy transference processes is that the 
system must have an important degree of damping. 
This is the case of the moving assembly of the direct 
radiation loudspeakers. The authors of [20] explain 
the paradoxical fact that: the energy dependence of 
the free synchronous periodic solutions (NNM) of the 
undamped, unforced (autonomous) system governs, 
in essence, the energy pumping properties of the 
corresponding damped and forced system. This 
circumstance is important for loudspeaker dynamics 
as well, although the moving assembly responds in a 
nonlinear fashion, the underlying linear system 
governs the performance of the device. This justifies 
the use of the linear modal analysis by the FEM, 
justifies to apply linear ordinary differential 
equations (ODE) models, and suggest perform real 
measurements of free responses in the moving 
assemblies as well. 

Because of the amplitude dependence of the 
response, the author A. Vakakis [24] graphically 
represents the frequencies of the NNM (obtained 
when the system under test is subjected to free 
response) as a function of the energy of the motion, 
which is the physical energy of the system for the 
corresponding NNM under consideration. On the 
other hand, the dynamics of an oscillator close to a 
NNM is not “smooth” and “totally predictable”. The 
motions on the configuration space take place with 
complicated trajectories, and occur in stochastic 
layers. 

The case of low energy motions (small signals) may 
be deceiving with respect to the case of large 
energies, because for the moving assembly materials 
and geometries; motions of low energies are not 
smooth and have low predictability as well. As it is 
explained in [19] these systems have extreme 
sensitivity to initial conditions.  

In the speakers field the authors F..M. Murray y 
H..M. Durbin, [32] called certain peaks or clustered 
peaks they found while measuring motional 
impedance of compression drivers activity. The 
authors also reported the shift or miss of some high 
frequency modes for a bad transducer of the same 
type. The shift or miss of the high frequency mode 
caused a sensitivity loss in the corresponding 
frequency range and a rejection of the unit by the 
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quality control staff. It seams that these activities and 
the weak stability of a mode can be classified as 
nonlinear normal modes of the moving assemblies of 
the tested compression drivers. 

 
3. 3. Displacement Free Response of the 

Isolated Moving Assembly  

Displacement responses were done in an isolated 
moving assembly suspending it by the spider, which 
is the less influential suspension on the whole 
response. The excitation signal was a short axial 
impulse applied to the coil at the free side by means 
of the wooden cross bar. The measurements were 
done following the criteria used with the 
accelerometers, at the measurement points A depicted 
on Figure 14. For brevity only the measurements in 
the outer cone are shown. 

 

Figure 17: Displacement free responses of the 
moving assembly measured at site A (outer cone). 
The outer suspension is attached to the moving 
assembly. 

 

Again, the sample exhibited different behavior when 
force was applied stretching or shortening the moving 
assembly neck. Figure 17 illustrates one of the 
responses for a pulse that stretches the neck. The 
bottom graphics enhance the founded peak of 933 Hz 
with several jointed peaks. On the contrary, the other 
displacement transducer (upper graphic), delivered a 
spectrum which enhances a split peak around 705 Hz. 
This peak may be the evolution of the one found 
when we measure with accelerometers, formed by the 
pair of nonlinear normal frequencies of 680 Hz -1220 
Hz. Notice that the tested moving assembly whose 

results were those of Figure 15 was suspended only 
by its spider. 

 As expected, and in coincidence with Vakakis [19], 
the response was sensitive to the excitation level. 
This gives an additional complexity to the 
interpretation of the results. 

 

 

Figure 18: Lock-in of the radial modes of the moving 
assembly when submitted to an axial impulse. 

 

When we measure the free response of the isolated 
moving assembly in the low frequency range for 
certain input force levels, and for a force direction 
which shortens the neck of the test specimen, we can 
see that the axial modes may lock-in the bending 
modes (called radial in paragraph 2) of the cone. 
Figure 18 illustrates the response, showing at the top 
the amplitude of one displacement transducer and the 
bottom the phase between both displacement 
transducers. Observe the spectral sequence of modes 
showing alternatively a phase of 0 and π radians, 
which corresponds to bending modes (radial modes) 
on the cone, whose mode shapes (see Figure 1) have 
even and odd sides respectively. The responses 
delivered a high spectral coherence between both 
measurement points and even better spectral shape 
(smooth) than the response for a radial pulse applied 
directly to the cone. For brevity this is not illustrated 
here. 

3. 4. Forced Response of the Woofer 
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Figure 19: Forced acceleration responses of the 
moving assembly measured on site B. 

 

Despite most of the literature which deals with non 
linear normal modes being addressed to the free 
response of the systems (see for example [23], [24], 
[25], [26]), it is convenient to know the forced 
response of them as well. In order to complete the 
measurable responses of the moving assembly, the 
forced response, which is essential, was measured. 
The unit was measured while driven by a voltage sine 
sweep. Because the tested sample has one of the 
outer suspension modes seen before, close to one of 
the axial modes; the acceleration response at the 
measurement points A, is more complex than the 
inner cone response (measurement points B). For this 
reason the forced response of the woofer at 
measurement points B is shown. As in previous 
figures, Figure 19 shows the forced acceleration 
response, in dB but referred to an arbitrary level. In 
the forced response the set of frequencies 620Hz-
1240Hz is clearly depicted and the frequency of 1036 
Hz may correspond to the free response of 930 Hz as 
seen before. 

3. 4. 1. Displacement Forced Response of the 
Cone 

 

Figure 20: Forced vectorial displacement response of 
the moving assembly measured on site A (outer 
cone). 

 

The displacement measurements performed at the 
measurement points A of the cone gives the results 
depicted in Figure 20. The figure contains the 
magnitude response of one displacement transducer 
and the phase between both measuring devices for a 
sine sweep on the woofer in the range 300 Hz – 1600 
Hz. In the Figure the most outstanding peaks are 636 
Hz, 964 Hz and 1208 Hz. These peaks correlate well 
with those found by accelerometers. The figure 
shows a high phase mismatch around 630 Hz, this is 
mainly due to interference or interaction the cone has 
with the main suspension flapping mode, which is 
spectrally close, and that couples in our sample with 
the axial mode. This point is not treated in detail for 
reasons of brevity. The small peak and phase 
deviation at 460 Hz is due to the rocking mode 
around the neck which the moving assembly has. 
This mode will be shown later on. Phase deviation in 
the graph is not too relevant because the loudspeaker 
is working forced by the force exerted on the coil, 
and the moving assembly is not in free motion.  

3. 4. 2. Coil’s Forced Response 

The displacement of the free side of the coil was 
measured on a sample which was identical to the one 
used for forced responses. The sample for this 
measurement has a wider air gap and four holes on 
the bottom magnetic plate, to provide access to the 
free side of the coil. A lightweight, narrow and stiff 
cardboard ring was glued to the coil at the free side as 
a light reflector. 
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Figure 21: Measurement of the coil motion using 
drilled holes on the magnetic back plate in a 
loudspeaker which has a wider air gap. 

 

 

 

Figure 22: Forced displacement response of the coil 
measured with the set up of figure 21. 

 

A detail of the measuring set up and the tested 
sample is depicted in Figure 21. The displacement 
response is illustrated in Figure 22. Observe at low 
frequencies the straight line falling with frequency 
and at medium and medium-high frequencies the 
humps the figure depicts. Observe the peaked region 
of 612 Hz- 688 Hz and two ranges more, one 
centered at the cursor (1072 Hz) and the other of 
wide band with two peaks at 1300 Hz and 1400 Hz. 
Observe the response has clear nonlinear signature 
and note how 650 Hz and 1300 Hz has an important 
displacement response. These peaks have an increase 
in frequency respect to those found measuring at the 

cone.  Despite the Bl of the modified tested sample 
having diminished in respect to a standard unit, this 
does not significantly change the outstanding 
frequencies of the response, and the measurements 
are valid for the targeted purposes. 

 

 
4. A LINEAR MODEL OF THE SPEAKER 
BASED ON THE AXIAL MODES 

 

Despite the moving assembly having an evident 
nonlinear behaviour; the response will be controlled, 
mainly in practice, by the corresponding underlying 
linear part. A model of the speaker that assumes that 
the whole moving assembly mass is bulk or 
concentrated in the coil does not correspond well 
with reality, because the neck and outer cone 
compliances are important in the upper part of the 
transducer frequency response. At high frequencies 
the cone mass is linked mechanically with the coil 
but not electromagnetically as the coil’s mass is. In 
reference [27] the author Friedland calls the system 
which is considered to have less degrees of freedom 
than it actually has, a physical uncontrollable system. 
A speaker model with a single mass can be seen, for 
example, in the work of A Bright [24]. 
 
Following the axial modelling of Figures 2, 3 and 4, 
applying the force to the coil mass, and adding the 
equation which supplies the coil intensity, the global 
moving assembly can be modelled as follows: 
 
m coil* xcoil´´ = - c1*xcoil´- ksp* xcoil - kneck *( 
xcoil –xi_c) + Bl*i             (1)                        
 
m i_c* xi_c´´ =  - c2* xi_c ´- kneck*( xi_c - xcoil) - 
ko_c*( xi_c –xo_c)             (2)                      
 
m o_c* xo_c´´ = - c3* xo_c ´- ko_c ( xo_c - xi_c)-
ksusp xo_c                                 (3)                                  

 
i = (V*Cos(2*π *f*t) – Bl * xcoil ´) / (R+2* π 

*f*L)      (4) 

 
Being : xcoil, xi_c, xo_c the displacements of the coil, 
the inner cone, and the outer cone respectively.  The 
primes denote differentiation with respect to time. 



Bolaños Modal analysis,  nonlinear normal modes (NNM) 
 

AES 119th Convention, New York, NY, USA, 2005 October 7-10 

Page 15 of 21 
 

m coil, m i_c, m o_c, the coil mass, the inner cone mass 
and the outer cone mass respectively. 
ksp and ksusp are the stiffness of the spider and the 
stiffness of the suspension. 
kneck, and ko_c are the stiffness of the neck and the 
stiffness of the outer cone. 
c1, c2 and c3 the damping associated with the 
elements of the model. 
Bl is the transducer conversion factor (or the 
transduction coefficient). 
R is the electric resistance, V is the voltage, i is the 
electric intensity, f is the frequency and t is time. 
For simplicity here the inductance L is assumed as a 
constant.  
 

 

Figure 23: Acceleration responses of the three masses 
of the modelled moving assembly for the values 
given in the text for a neck 20% softer than the outer 
cone. 
 

 

The equations system (1), (2), (3) and (4) has been 

solved for a speaker which has the following 

parameters and applied voltage:  

m 

coil 

m 

i_c 

m 

o_c 

ko_c kneck Bl factor Volt 

37 

g 

35 

g 

15 

g 

479000 

N / m 

0.8 * 

ko_c 

22 N / A 1 V 

 

 
In this case the neck stiffness is assumed to be 20% 
softer than the outer cone spring stiffness. The 
stiffness value ko_c is estimated, based on 
measurements, but unfortunately the measurements 
are inaccurate. The numeric solution is depicted in 
Figure 23 for the case of the three damping factors 

equal to 0.1. In the figure the acceleration spectra is 
depicted for the three split masses of the moving 
assembly. Observe the two upper poles of the system 
(the first pole is very much damped). Observe how 
the maximum acceleration values at low frequencies 
are obtained by the outer cone, and the maximum 
acceleration values at high frequencies are obtained 
by the coil. Notice, the two zeros the coil has and the 
single zero the inner cone has. 
 
 The spectral shapes of the figure correlated 
reasonably well with the experimental acceleration 
forced responses illustrated in Figure 19, and with the 
displacement forced responses of Figures 20 and 22. 
The presence of the double zero in the coil response 
and the single zero of the inner cone response 
illustrated in Figure 23 justifies the experimental 
results obtained close to the coil which have better 
spectral definition than those obtained at the outer 
cone side. The real moving assembly exhibits 
nonlinear normal modes and some of the spectral 
peaks appear in the graphic in a pair, as the 620 Hz 
and 1240 Hz of Figure 19. It is obvious that the linear 
three degrees of freedom has three resonances and 
the real nonlinear moving assembly has its intrinsic 
spectral complexity. However the underlying linear 
system is visible in Figure 19. 
 
If we assume a neck 20% harder than the outer cone 
spring, the forced spectral response is the one 
illustrated in Figure 24. Despite two of the upper 
poles shifted up in the spectrum, observe that the 
second resonance (of the three) is the most sensible to 
this stiffness change. In Figures 23 and 24 we can see 
that due to the stiffness increase of the neck, the 
zeroes have shifted up in the spectrum as well, but 
the zero of the inner cone almost remains at the same 
place. The spectral shift of the poles and the zeros 
can be used as a tool for mode finding, when using 
experimental techniques, but it is difficult in practice 
due to the spectral complexity of the NNM modes of 
the real moving assemblies. The spectral shift of the 
zeros is hardly detected due to the large lack of signal 
in these spectral regions.  
 
A model that splits the cone in three masses was 
proposed by G. Pellerin and his colleagues [29], 
however this model links the electromagnetic circuit 
with each individual mass, and these masses do not 
belong to a system of coupled masses by its 
neighbour stiffness (the three degrees of freedom 
system). A model which considers several degrees of 
freedom on piezoelectric transducers is reported in 
reference [30]. 



Bolaños Modal analysis,  nonlinear normal modes (NNM) 
 

AES 119th Convention, New York, NY, USA, 2005 October 7-10 

Page 16 of 21 
 

 

 
 
Figure 24: Acceleration responses of the three masses 
of the modelled moving assembly for the values 
given in the text for an outer cone 20% softer than the 
neck. 
 
 
 
5. OTHER MOVING ASSEMBLY SIGNIFICANT 
MODES, AND LOCAL MODES. 
 
Beside the main axial mode there are some 
significant modes that the moving assembly has. One 
of these modes is the 3D bending or rocking of the 
two main masses (cone and voice coil) around the 
neck, which performs as a spring. The neck-spring 
exhibits global-bending flexibility. 

 

 

Figure 25: One of the two orthogonal components of 
the motion of the moving assembly while it is 
performing a rocking neck mode. Suspensions are 
omitted in the figure. 

 

Figure 25 depicts one of the two orthogonal 
components of the bending global mode around the 
neck, were the suspensions are hidden for clarity. The 
real motion has two components, and this motion can 
be described as follows: Any point of the free edge of 
the voice coil describes a circumference which 
belongs to the base of a virtual cone, with the apex at 
the side of the elastic centre of the neck. Any point of 
the cone rim describes a circumference which 
belongs to the base of a virtual cone with the apex at 
the side of the elastic centre of the neck as well. The 
motion of the bended axis of the moving assembly 
describes two cones joined by their apex. The motion 
is alike two spinning tops moving in a free space with 
precession (but not spinning), restrained axially by 
their apex. The spinning tops (cone and voice coil) 
are mounted face to face and joined by their apex.  
This mode is a rocking mode similar to the well 
known regular rocking modes [31], but instead of a 
single inertia (the global moving assembly mass) 
related with two suspensions, it is caused by the two 
main inertias (voice coil and cone) acting over the 
neck bending stiffness. This mode can be called 
bending with rotation around the transducer axis by 
the neck, or rocking mode turning (or rotating) by the 
neck. This mode practically does not radiate sound. 
Due to the materials damping and potential 
nonlinearities the mode can influence other modes 
close to it in the spectrum. On the other hand, this 
mode does not produce any control force on the voice 
coil because its motion is not axial, and the mode is 
not restrained by the electromagnetic forces. 



Bolaños Modal analysis,  nonlinear normal modes (NNM) 
 

AES 119th Convention, New York, NY, USA, 2005 October 7-10 

Page 17 of 21 
 

 

 

Figure 26: Main extensional mode of the cone. This 
mode is commonly called “Cone breathing mode”. 

 

The high frequency roll-off of the acoustic response 
of the tested woofer, starts after a relevant peak of 
1700 Hz. The modal analysis by the FEM provides a 
mode of the cone called the extensional mode. While 
the moving assembly is in this mode the cone is 
moving with all particles in phase with the motion in 
the cone plane. This extensional mode is often called 
breathing mode [10]. In a real loudspeaker while the 
cone is vibrating on its extensional mode, most of the 
rest of the moving assembly and suspensions adapt 
their shape to the cone in-plane motion. The cone 
extensional mode is depicted in Figure 26. While the 
cone is moving in this mode it stretches and shortens 
periodically as it is heated and cooled periodically. 
The extensional mode is important in all kinds of 
transducers because the high coherence of the motion 
[38] and consequently the high acoustic radiation, see 
references [1] and [2].  To verify if the peak of 1700 
Hz corresponds with the extensional linear normal 
mode is beyond the purpose of this paper. 

The suspension’s modes depicted in figures 5, 6, 7 
and 8, are local modes of the loudspeaker because the 
vibration energy of the moving assembly is confined 

to the suspension while the speaker is moving on this 
mode shape. These modes are generally undesired by 
the loudspeaker designer, because of their 
uncontrolled condition.  Confined vibrational energy 
has been known in acoustics for many years. T. D. 
Rossing reported this confinement in the mridanga 
Indian drums [33], in which most of the vibration 
energy is confined to the loaded portion of the 
drumhead. The confinement of vibration energy in 
vibrating structures has been studied deeply both for 
linear and nonlinear systems for slender periodic 
structures. In this field the phenomenon is called 
localization, see for example [34], [35] and [19]. One 
intentional form of building up one or various local 
modes, which significantly extend the usable 
frequency range in loudspeakers, is the use of a 
double cone or a whizzer. 

The performance of this transducer has been 
explained by J.S. Stewart [36]; in this paper the 
author explains that most of the whizzer radiation 
(and interference) comes from the walls or “bell” of 
the whizzer. The author also says that the functional 
mechanism of the whizzer is not particularly well 
understood. 

A particular case of a local axial mode is the one 
developed in the whizzer. When a double cone 
speaker moves in this particular mode shape the 
delivered acoustic output is high due to the high 
coherence [38] the mode has. Figure 27 depicts the 
local axial mode of the whizzer of a double cone 
speaker. The model depicts only one suspension that 
is flat for simplicity. Observe that in this mode shape 
the suspension and the remaining part of the moving 
assembly are at rest while the inner cone is 
developing its neck’s axial mode. Because the inner 
cone does not have outer suspension the whizzer has 
the outer edge free, and the local axial mode and the 
extensional mode are able to develop high temporal 
and spatial coherence. This axial mode and the 
extensional (breath) mode of the inner cone (not 
shown for brevity), which both occur at high 
frequencies, are the main cause of the extension of 
the frequency response of the transducer. 

The inconvenience of this double cone system is  
reported by J. S. Stewart in [36] its “choppy 
response” and “terrible off-axis characteristics”. 
These drawbacks are because extra modes have been 
added to the moving assembly in respect to the same 
moving assembly with only its outer cone.  Some of 
these modes caused cancellations, interactions and 
irregular motions of the whole moving assembly. 
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Figure 28 depicts a mode at which the air pumped by 
one of the cones is absorbed by the other because of 
its counterphase. Figure 29 depicts one of the two 
orthogonal components of a local rocking mode 
around the neck of the inner cone.  

 

 

 

Figure 27: Local axial mode of the whizzer of a 
double cone loudspeaker. 

 

This mode, which is equivalent to the one in  Figure 
25, in a single cone speaker, which has nonlinearities 
on the moving assembly, may disturb or interact with 
the main radiating modes of the transducer. The 
mode can be better defined meshing the model finer, 
but the mode shape depicted in the figure is clear 
enough. The frequency range at which these 
disturbing modes appear are, as the spectra shown in 
[36], lower and much lower than the whizzer local 
axial mode and the whizzer extensional mode.  It is 
obvious that a model with three degrees of freedom 
as proposed in paragraph 4 will not be accurate 
enough for a double cone moving assembly. It is 
obvious as well, that these modes treated here are 
some of the underlying linear modes the double cone 
speaker has and the real speaker will obey the 
nonlinear physical laws. 

 

6. CONCLUSIONS 

Prior to obtaining the acoustic response of a direct 
acoustic radiator it is convenient to dynamically test 
the moving assembly verifying if it satisfies the 
performance targeted on the project specification. 
The modal analysis of the moving assembly and the 
suspension by the FEM provides the main linear 
normal modes of the woofers. The axial modes of the 
complete moving assembly are important eigenvalues 
and eigenvectors, and have been treated in some 
detail. The elasticity of the cone near the rim may 
interact with the suspension giving compound modes 
(of an axial mode and a suspension’s mode) which 
make it even more difficult to analyze the moving 
assembly, and may be a cause of significant influence 
on the acoustic response.  

 

 

Figure 28: Axial mode of the double cone speaker at 
which both cones move in antiphase. The surround 
has two rows of elements. 

 

The paper has reviewed significant modes which the 
moving assembly has, including local suspension’s 
modes and relevant modes of double cone moving 
assemblies including the whizzer’s local axial mode 
and the whizzer’s extensional mode. 

By standard laboratory instrumentation, and by 
traditional measuring techniques, the main natural 
frequencies of the moving assembly can be found at 
the low and medium frequency range of the woofer. 
The acoustic response, impedance function, free 
response and forced response data, correlate 
reasonably well. The acceleration and displacement 
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free response of the moving assembly gives the 
natural frequencies that will be found in the rest of 
forced measurements responses, including the 
acoustic response and the harmonic distortion. On the 
other hand, phase measurement is an inexpensive and 
valuable tool for mode classification. 

 

 

Figure 29: One of the two orthogonal components of 
the rocking mode around the neck of the inner cone 
of the double cone speaker (a local mode). 

 

 

The experiences show evidence that the modes of the 
moving assembly are nonlinear normal modes 
(NNM), which have specific treatment in literature. 
For forced high damping nonlinear systems such as 
the loudspeakers moving assemblies, the study of its 
linear counterpart is essential because its dynamics 
are governed by the underlying Hamiltonian 
(undamped) unforced system. The tested woofer 
seems to exhibit quadratic nonlinearities for its 
motion in the small. These quadratic nonlinearities 
must be analyzed carefully in order to give physical 
sense to the results. The frequencies found by 
experimental procedures are repeated in free and 
forced response, in acceleration and displacement 
measurements, in motional impedance, and finally in 
pressure response and harmonic distortion 
measurements as well. The main practical drawback 
is the closeness of a subsystem natural frequency (for 

example the suspension) to one basic NNM; this 
circumstance obscures the experimental results. 

It seems convenient to treat the moving assembly 
elements (cone, voice coil and suspensions) of the 
direct acoustic radiator as a three degrees of freedom 
vibrating structure, with electric control only applied 
to the voice coil. Despite the fact that using a three 
degree of freedom model may be a simplification, 
based on the axial modes; those models based on the 
moving assembly as a single mass are oversimplified 
[6]. The apparent paradox that some high renowned 
loudspeakers have high nonlinear moving assemblies 
should be accepted by those who are not familiar 
with nonlinearities. Due to the use of high transducer 
conversion factors (Bl), the moving assemblies are 
driven at regimes of high energies where the 
nonlinearities due to the moving assemblies 
themselves are less evident [37] and [38].  
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