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ABSTRACT 

The paper explains the basic results of numerical and experimental analysis of moving assemblies and suspensions 
of speakers taking into account the bending forces and the in plane forces that acts on these slender bodies. The 
distribution of these stresses is shown in cones of direct radiators and in domes (for example, in compression 
drivers) as well. An explanation of the generation of subharmonics is obtained by this technique. The sudden jump 
of the working point on moving assemblies is justified by means of the compression forces that act on the 
suspensions. These compression forces are the cause of the buckle or snaps that very often occur in the speakers. 
This article analyzes different types of suspension showing the compromising situation the designer has to deal with. 

. 

 

1.  PURPOSE AND INTRODUCTION 

The intention is to do an overview of the normal 
stresses in the moving assembly, and to have the 
minimum necessarily knowledge to start the design 
of suspensions in loudspeakers. The problem of 
deformations of the moving assembly and 
suspensions is regularly treated by modal analysis, 
but unfortunately, much less attention is paid to the 
stress distribution in these parts of the speakers.  The 
stress distribution along the moving parts shows the 

main nature of the loads carried by the elements that 
build up in the transducer. A stress reduction is 
convenient both in the moving assembly and the 
suspensions; as, the normal modes will be less stress 
dependent, the potential traveling waves will move 
free on the cone, the moving assembly will move 
smoothly, and hence, the transducer will radiate 
better sound. 

Before beginning to look at the design from the point 
of view of the dynamics (modal analysis), it is 
convenient to apply static load to the coil and analyze 
the stress and strain response. The static analysis 
gives an insight of the information of the 
performance of all elements in motion, not only in 
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respect to the stiffness but also in respect to the 
nature of the internal loads and the amount of 
bending and in plane stresses on all the transducer. 

In loudspeakers the use of very soft materials is 
common, such as the resinous technical textiles and 
foams for suspensions, and the use of hard materials 
like the polyester, titanium, etc. is also common. 
These materials behave very differently, while the 
firsts ones acts as nonlinear soft, the lasts behaves 
nonlinear hard. This circumstance implies a plurality 
of performance combinations in practice. 

1. 1. The tensile and compressive stresses in 
thin shells. 

Following the criteria given by the professor Den 
Hartog [1] the use of two orthogonal coordinates are 
the most simply to handle shells of revolution, these 
coordinates are the meridional and the tangential 
coordinates. The meridional coordinate is the length 
of the shell measured along a meridian, this is called 
longitudinal as well. The tangential is the measure of 
the length of the sell along a parallel or a hoop. 
Figure 1 depicts these coordinates in a shell. 

If the shell is loaded some parts of it will resist 
extension loads, and some parts resist compression 
loads. The transition between extension and 
compression is a region where the elements have a 
high shape distortion and the forces are of shear 
nature. 

Figure 2 depicts an element of a cylinder shell 
subjected to extension forces in both meridional and 
tangential directions. If the opposite arrows were 
rotated � radians each, the element would be 
submitted to compression in the two coordinates. 
Both extensional and compression forces are very 
different in character. In a technical textile the 
resinous textile material performs well in extension 
but not in compression. The fabric do not support 
these compression loads. This point will be seen later 
in depth. 

 

 

Figure 1: Meridional and tangential coordinates on a 
shell. 

 

 

 

 

Figure 2: Cylinder shell element submitted to 
extensional forces in both coordinates. 

 

When a shell is submitted to bending it will develop a 
stress due to this deformation; if the shell is 
submitted to a load in plane, there will be in plane 
stress and strain as well. These bending and in plane 
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are the two kind of stresses and strains that the shell 
will carry. 

Assume we have a hose which has a cross section in 
the form of an ellipse because it has been deformed 
(flattened) for some reason. If pressure is applied to 
the hose, a small amount of it will be sufficient to 
obtain the original cross section which is a circle. But 
if we want to inflate the hose and obtain a circular 
cross section of bigger radius, much more pressure is 
needed. The first mild pressure that retrieves the 
original circumference cross section applies bending 
stress to the hose. The additional pressure is held by 
the hose wall by in plane stress. This simple example 
applies to other slender bodies as the suspension. The 
first action in a deformed suspension is bending, after 
it, the in plane forces acts on the body subjected to 
any kind of load, pressure or force.  

The stresses measured on two orthogonal coordinates 
are not equal. In a cylinder we have: 
 

trpSt /0×=    (1) 
 

)2/(0 trpSm ×=    (2) 
 
Being tS  and mS  the tangential and meridional 
stresses respectively, p is the applied pressure, t is the 
thickness of the cylinder wall, and 0r  is the radius of 

the cylinder. Moreover 0/1 rc =  is the curvature of 
the cylinder. 
 
The tangential stress is double than the meridional 
(longitudinal) stress. This is a consequence of the fact 
that: 
 

tpRSRS ttmm /)/()/( =+  (3) 

and  mR  is infinite for a cylinder. 

The topic of strength of materials can be revised for 
example in [2] and [3], the study of shells can be seen 
for example in [4] and [5], the general theory of 
matrix structural analysis in references [6] and [7]. 
and the theory of stability of structures in [8], among 
many others. 

The in plane stress in a shell element at which 
external pressure is applied is calculated based on the 
following formulas: 

0// =∂∂+∂∂ ySsxS x    (4) 

0// =∂∂+∂∂ xSsyS y     (5) 

And the equation (3), written on Cartesian 
coordinates yields: 

tpRSRS yyxx /)/()/( =+  (6) 

Being xS  and yS the longitudinal and transversal 

stresses on the element and sS  is the shear stress. 
The shear stress deforms a rectangle element into a 
trapezium. 

The basic equations for a shell element in bending 
are: 

)//( 2222 ywxwDM x ∂∂+∂∂= µ  (7) 

)//( 2222 xwywDM y ∂∂+∂∂= µ  (8) 

xywDTxy ∂∂−= /)1( 2µ   (9) 

Being : 

xM and yM  the bending moments on the element in 

the x an y directions, xyT is the twisting torque on the 

element, w  is the displacement normal to the 
element, D is the bending stiffness of the shell and 

has the value: 
)1(12 2

3

µ−
= Et

D  (10), and finally, µ 

is the Poisson ratio. 

The equations (7), (8) and (9) are equivalent to the 
equation: 

"* yEIM =  (11) in beam theory (where EI is the 
bending stiffness of the beam). Extensive 
explanations of this topic are available on references 
[2] and [3], for example. 

Here we will deal with slender bodies of some 
stiffness like the cone and a stiff dome of a 
compression driver, and later we will treat slender 
bodies of less stiffness as the suspensions. 
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2.  THE STRESSES ON A CONE 

In mechanics it is well known, that the main 
eigenvector of a slender structure has the same shape 
that the structure has due to the load of its own 
weight. This propriety has been very helpful for the 
analysis of large structures and rotors, for example. In 
this engineering field the slender rotors bends 
because of its own dead weight. The deformed body 
must satisfy the boundary conditions which are 
imposed by the bearings. This is the case of a 
loudspeaker as well. A static load applied to the coil, 
gives a static deformation of the full moving 
assembly, which corresponds with the main speaker 
mode, which obviously, is only axial. This justifies 
the use of the statics in the speaker analysis. If we 
deal with modes of higher frequency, the situation is 
very similar. For example, the high frequency axial 
modes of the moving assembly, of which there are 
two, can be found simply extending the coil’s load 
just at the end of the speaker stroke. Then the moving 
assembly will deform axially. Thus the two axial 
modes will appear, showing the elasticity near the 
cone rim and near the moving assembly neck, see 
reference [9]. This static deformation is the base to 
understand the dynamic axial mode shapes. 

But the most convenient way to observe the stresses 
on a cone is to suspend the moving assembly by 
means of a set of ideal suspensions both in the cone 
rim and the neck as it is done in practice. The ideal 
suspension is a device formed by an orthogonal set of 
springs of equal stiffness, providing isotropic 
conditions. In the proposed FEM model each node of 
the rim and each one of the neck has a boundary 
condition of three equal translational springs and 
three equal rotational springs as well. Because the 
main object is the knowledge of the linear behavior, 
the ideal suspensions are set up of the soft type. This 
soft type suspension agrees well with most real 
transducers. 

This procedure will provide the stress distribution, 
basically due to the cone geometry and due to the 
materials used. In practice other stresses, like the 
ones exerted by the real suspensions, will be added to 
those which belong to the cone itself. 

We must notice that principal stresses are the 
maximum values that compression, tension and shear 
can take on as we look at the reference block 
(element) as it is rotated through an angle. The S1 
and S2 normal stress values are at a rotation angle 
where the shear stress is minimum. So that the S1 and 
S2  stresses are taken in a set of orthogonal directions 
established by the condition of less shear stress The 
present value of shear stress is the highest value of 
shear which occurs at an angle where the normal 
stresses are equal and at a value (S1+S2)/2, see the 
references [1], [2] and [3]. 

The Figure 3 depicts a modeled moving assembly and 
the upward applied load at the coil. The elements are 
oriented in a local set of coordinates, the meridional 
X and the tangential Y. In our case of revolution’s 
symmetry, this local set of coordinates corresponds 
roughly with the principal stresses axis S1 and S2. 

One of the two principal cone stresses, the called S1, 
is depicted in the figure 4. The coil and the former are 
omitted for clarity. The scale at left side for this 
figure and all the rest in the paper are in relative 
values. Observe that the cone rim performs in tension 
by a positive magnitude, while the cone neck, for this 
particular direction, performs in compression (which 
is negative). The other principal stress S2, which is 
depicted on the Figure 5, has the same trend, except 
that the tension on cone rim is higher than the S1 (see 
the score at left side). 

If a cone area has a surface in tension and an adjacent 
surface in compression, then, between the areas 
subjected to opposite stress, will be a zone of shear 
stress, which is depicted in the Figure 6. The shear 
stress is concentrated on a ring of shorter radius than 
the radius of tensile stress on the rim. There is 
another shear area of less strength near the cone neck. 

Table 1 illustrate the stress values S1 and S2 in the 
cone taking into account the mathematic terms of 
both types of stresses and strains in the cone (bending 
and in plane), or the mathematic terms due to the 
bending alone. These values must be managed with 
caution, and must be treated as a whole set. Despite 
the fact that the minimum strength of S2 when only 
applying the bending terms is lower than the 
corresponding when all terms are used, the results are 
consistent. An overview of the table shows that the 
stress S1 is noted to have a contribution of both type 
of strains, the bending and the in plane, both in 
tension and in compression. However the strength of 
S2 has the same trend as that of S1 for tensile stress, 
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but in terms of compressive stress, S2 is much higher 
using only the bending terms rather than all terms, 
which means that bending stress is more influential 
than in-plane stress. This is due to the presence of the 
former and coil. The shear stresses pattern, which is 
illustrated on figure 6, shows that where there are 
high changes of the principal stresses from tensile to 
compression and vice versa a high shear stress is 
developed. These regions are close to the cone rim 
and close to the cone neck. 

 

Figure 3: Moving assembly with positive load on the 
coil and a detail of local coordinates. 

 

Figure 4: Principal Stresses S1 on the cone. Scale on 
left must be taken as relative values. Scale is arranged 
for black and white print. Colors not appearing at the 
cone as been erased on the scale. 

 

 

 

Figure 5: Principal Stresses S2 on the cone 

 

 

Figure 6: Shear on the cone 

 

 

Terms used 
on 

calculations 

Principal 
stress 
axis 

Max. 
strength 
(tensile) 

Min. strength 
(compressive) 

All terms S1 1.14e5 -2.7e5 

All terms S2 2.36e5 -1.66e5 
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Only 
Bending 

S1 6.07e4 -1.28e5 

Only 
Bending 

S2 1,51e5 -3.65e5 

                                     Table 1 

S1 and S2 components of the cone stresses, based on 
calculations with all terms or only with the bending 
terms. Take the values as relatives between them. 

 

 

3. THE STRESSES ON A DOME AND 

SUSPENSION OF A COMPRESSION DRIVER. 

Figure 7 depicts the dome of a compression driver, 
which is a spherical segment, and illustrates the 
meridional and tangential coordinates. Figure 8 
depicts the complete moving assembly with its 
suspension, which is flat. 

If we apply pressure to a sphere, both stresses mS and 

tS will be equal, and have the magnitude: 

)2/(0 tprSS tm ==  (12). The sphere is stiff in 
both coordinates as the cylinder with the same radius 
is in the meridional coordinate. This is the ultimate 
reason of use of domes in compression drivers. In 
these devices it is very common the use of titanium, 
beryllium, or other stiff and lightweight materials. 

Since the dome do not bend, but the suspension does, 
the stresses on the dome are of the in-plane type, and 
the suspension’s stresses are of bending nature. 
Figure 9 depicts the two principal stresses S1 and S2 
on the dome and the suspension. In the figure we can 
see the stresses for the upward stroke, being 
compressive the suspension rim in contact with the 
dome in the S1 direction, which is radial. However 
the stress S2 (which is circumferential) is tensile in 
the dome rim, with less strength than S1. Both S1 and 
S2 are contour stresses one meridional and one 
tangential. The meridional bending stress on 
suspension and the in plane stresses on the dome 
have an inner stress belt on the inner suspension and 
a tensile stress belt on the dome rim respectively. 

Observe in the figure as well, that the boundary of the 
two jointed slender bodies has a high concentration of 
shear forces, as it must be, because the close 
proximity of compression and extension forces. 
Scales on the left side must be taken as relatives as in 
the previous and following examples. 

Observe in Figure 10, which represents the principal 
stresses on the dome and suspension on the 
downward stroke. For this stroke, the principal stress 
S1 (meridional) is compressive on the dome rim, and 
the principal stress S2 is tensile in the inner 
suspension rim. The path of shear forces is very 
similar to the one in Figure 9. Both stress S1 and S2 
for the upward stroke and the downward stroke have 
a hoop path, and all stress is concentrated at the 
interface of the dome and the suspension. Maximum 
S1 compressive stress is at the suspension’s side for 
the upward stroke, while stress shift to the dome side 
for the downward stroke. Maximum tensile stress of 
the S2 component is at the dome side for the upward 
stroke, while stress shift to the suspension’s side for 
the downward stroke.  

To resume, stresses in both directions are sharp circle 
contours on the suspension and dome rim. This 
circumstance suggests that these stresses are the 
cause of the subharmonics that these devices radiate 
often. In reference [10] it is proposed that the 
subharmonic generation was caused by the 
parametric interaction of modes, some of them were 
localized basically on the dome itself, and some were 
localized in the suspension. One parametric force is 
the change of a parameter periodically in a moving 
assembly or suspension contour with a frequency 
which is double to the one of an eigenvalue. If the 
stress of the inner suspension contour is changed 
periodically twice in a cycle, for example, then a 
parametric excitation of a suspension mode can be 
realized. These analyses of the static stresses suggest 
to the reader a deeper insight of the problem of 
subharmonic generation. 
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Figure 7: Spherical segment and coordinates. 

 

 

Figure 8: Moving assembly of a compression driver 
suspended by a flat suspension. 

 

 

 

Figure 9: Principal stresses and shear on the dome 
and suspension of the moving assembly of Figure 8 
while it is statically loaded upward. Scales on left are 
arranged for black and white print, colors not 
appearing at the model as been erased on the scale. 

 

 



Bolaños Stress Analysis on Loudspeakers
 

AES 121st Convention, San Francisco, CA, USA, 2006 October 3-5 

Page 8 of 20 

 

 

Figure 10: Principal stresses and shear on the dome 
and suspension of the Figure 8 while the transducer is 
statically loaded downward. 

 

3. 1.  Nonlinear static analysis of the dome 
and suspension set. 

If we submit the model to the same loads as in linear 
analysis but applying it in substeps, and each substep 
is applied to the precedent deformed body. Then a 
nonlinear analysis of the stiff type is possible. The 
out-of-plane stiffness of a structure can be 
significantly affected by the in-plane stress on the 
structure. The coupling between in-plane stress and 
transverse stiffness is known as “stress stiffening 
effect”. For stiff materials like the titanium we are 
using in the example, polyester, etc., this effect is 
very common in practice. 

Using the same loads, both for the positive and 
negative stroke, and splitting the load in five 

substeps; we find for the flat suspension we are using, 
a high stress stiffening effect. In linear analysis 10 
Newton applied to the coil gives a displacement of 
1.573 mm, while the nonlinear analysis in five 
substeps gives a displacement of only 0.587 mm. 
These values, despite the high differences found, 
seem to be realistic. 

In Figure 11 the obtained principal stresses S1 and S2 
for the upward stroke are depicted, and Figure 12 
depicts the principal stresses for the downward 
stroke. Observe the nonlinear analysis gives stress 
contours near the same regions that the linear analysis 
does, but now, both strokes develop compression in 
the suspension, being the most important the 
meridional direction.  Notice in Figure 12 how S1 has 
the higher compressive value in the suspension, while 
in linear analysis was tensile stress and of lesser 
strength. Observe as well that compressive stress in 
the suspension after the nonlinear analysis, takes 
place in both principal stress axis S1 and S2. Finally, 
notice that the width of compressive span is much 
higher than the one found in S1 for the upward stroke 
and linear analysis. These stresses with the same sign 
in both strokes mean that, if the transducer performs 
nonlinear, twice in an oscillation cycle, there is a 
compressive action done in the suspension, which is 
one of the necessities for a parametric action to create 
subharmonics. Another necessity mentioned on the 
reference [10] is the nonlinearity as well. 
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Figure 11: Principal stresses on the dome and 
suspension of the Figure 8 while the transducer is 
nonlinear statically loaded upward. Observe the 
compression all over the suspension. 

 

 

 

Figure 12: Principal stresses on the dome and 
suspension of the Figure 8 while the transducer is 
nonlinear statically loaded downward. Observe the 
compression all over the suspension for the upward 
stroke. 

 

 

4.  THE COMPRESSION STRESSES 

The loudspeaker industry usually works with medium 
stiffness materials such as the paper pulp, high 
stiffness such as titanium, berilium, etc., and deals 
very often with materials that have a reasonably 
tensile stiffness and very small compression stiffness. 
The technical resinous fabrics are materials that 
belong to this group of elements without the capacity 
to handle compression loads. When resinous 
technical textiles are in compression they normally 
buckle and wrinkle. These materials are not able to 
handle these loads. 

In engineering, the tensile stress is often preferable to 
compressive, because any slender body subjected to 
compressive forces (or temperature) will buckle 
sooner or later.  The buckle theory is based on the 
Euler’s theory, which is reported in [1], [2] and [3]; 
and more detail for plates and shells in references [4] 
and [5] for example. 

If we imagine a slender column loaded axially, if 
certain conditions of eccentricity of the load to the 
column, or other geometrical small imperfections 
occurred, then the column would bend or buckle for a 
certain critical load. The buckle is a sudden bending 
of the column, it is a bending snap. 

The Euler’s load is inversely proportional to the 
square of the column length, for this reason the 
column length is the most important parameter for the 
critical load. This critical load is the one needed for 
producing the sudden snap. Figure 13 depicts a spring 
buckled by an axial load applied to it. The spring 
deforms axially, but for a certain load, which is the 
critical load, snaps or bends suddenly as the figure 
shows. Figure 13 illustrate a slender column axially 
loaded and buckled to the right. 

In Figure 13 the spring has bent to the left because 
the compressive load and the imperfection of the 
spring trend to bend to this side, but if the 
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imperfection was in another physical place the 
bending would be to other side. An imperfection is 
any small eccentrics loading, small lack of column’s 
orthogonality, etc., Details of this are outside the 
overall scope of the paper.  See the references [4] and 
[8] for this subject. The buckling problem in shells 
has been treated widely in bibliography, references 
[15] and [16] are two of the many. 

In textile suspensions, the buckle is very important 
because any compression load will tend to cause this 
effect, and the material does not have the capacity for 
supporting such compressive loads. This 
circumstance affects very much the performance of 
the speaker. 

Technical textiles perform as soft nonlinear materials, 
because the interlaced yarns (warp and weft) 
generally have difficulties to handle shear forces, 
because the lack of material between yarns and yarn, 
and because the slippage, among other causes. This 
soft behaviour, instead of the “stress stiff effect” we 
have mentioned before, it tend to deliver a large 
stroke. Some suspensions overcome these difficulties 
by means of a large amount of resin in the holes 
between yarns. See, for example, the references [11], 
[12], [13] and [14].  

The Euler’s column of Figure 13 buckles bending 
while it is compressed by in-plane forces acting 
axially. This implies the simple Euler’s column has a 
bending mode, which will be the final state of the 
column. Additionally an axial load introduces the in-
plane compressive forces in the column. The simplest 
way to see the process is to assume we have two 
orthogonal modes one with small amplitude but high 
compressive stress (column compression), and the 
other with high displacement (column bending). 
There are many working structures which are actually 
in post buckling state, because, some elements have 
reached this state, but the global structure is able to 
handle the load. The ultimate strength of an structure, 
is the maximum load that this structure can handle 
after the collapse. 

 

 

Figure13: The bent Euler’s column and a buckled 
spring after axial compression. Observe how the 
slender bodies yield on the first bending mode. 

 

In the suspension’s field it is common to work with 
arches. Arches are generally divided in two groups: 
high arches and shallow arches. High arches are those 
for which the center line of the arch may be 
considered incompressible. Flat or shallow arches are 
those for which its shortening is important. This 
definition applies for beam arches, and can be applied 
for shells as well. 

Equation (11) changes from beams to high archs 
taking the form: 

222 /// RwdswdEIM +=   (13) 

Being s the coordinate along the arch, and R the arch 
radius. The rest of symbols are those given already. 
Equation (13) explains that the applied bending 
moment changes the angle of the arch (this will be 
seen later) and the vertical displacement but affected 
by the square of the arch radius. 

Arches buckles as any slender body does. Figure 14 
depicts a problem solved by Timoshenko, which is a 
shallow arch hinged at both ends, one end by rollers, 
and uniformly loaded. The figure illustrates the most 
common state after the critical load is reached, which 
is the buckling, see [4]. Observe the buckled mode 
shape which corresponds to the second bending 
mode. 
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Figure14: Basic buckle mode in a shallow arch 
hinged at both ends and loaded uniformly. Observe 
the arch, after buckling, yields on the second bending 
mode. 

 

Equation (13) takes the following form for shells of 
only one curvature as a cylinder. 

DRMwdswd /*/ 222 =+  (14) 

And the equation (13) has the following solution, 
which is the same as for rings: 

θθ cossin* 21 CCw +=  (15) 

Being the constants 1C  and 2C . These constants are 
calculated from the shell’s boundary conditions.  

The Euler’s critical load has a more precise 
expression for plates, this was due to Bulson [24]. 
For a square plate made by an orthotropic material 
this expression is: 

22 /4 lDDP yxcrit π= (16) 

Being l the length of the square plate and xD  and 

yD the bending stiffness of the shell in the x and y 

directions respectively, see equation (10). 

A better prediction of the critical load takes into 
account the plate aspect ratio. This aspect ratio is 
important in buckling processes and modifies the 
equation (16). Aspect ratio has the form: 

4/1)/(*/ yx DDld=φ  (17) 

Being d the plate length and l the plate width. The 
aspect ratio plays a significant role in loudspeaker’s 
suspensions. A detail of that topic is beyond the 
paper’s scope. 

 

 

5. COMPRESSIVE LOADS IN A SUSPENSION.  

THE JUMP IN A SPEAKER 

Loudspeaker suspensions buckle as well as other 
slender bodies do. Buckling is the most common 
cause of the sudden jump of the working point. The 
jump phenomenon in speakers was reported in early 
1940 by H. Olson [17]. The problem has been treated 
experimentally in 1976 by Weaver and Leach [18]. 
Various authors have treated the subject taking the 
speaker as a whole body with nonlinearities in the 
suspensions or in the magnetic field, see for example 
[19], [20] and [21]. The Mowry’s approach in 
reference [22] is done by means of structural 
analysis.  

As already established Euler’s column is activated by 
two modes: the first carrying force (axial and 
compressive) and small displacement; and the second 
high transverse displacement and small force; in the 
speakers we have an equivalent scenario. The main 
force is exerted by a suspension’s radial mode or by 
radial compressive stress in a suspension’s contour. 
The mode of high compliance is, obviously, the main 
mode of the speaker, which is the most stable and 
flexible. When the radial stress exceeds the Euler’s 
critical load, the cone buckles in its softer orthogonal 
(to the radial force) mode which is the main speaker 
mode, and the cone jumps. 

Here the problem is treated through two examples by 
means of the statics. Figure 15 depicts a sector of a 
double half roll suspension, this suspension is 
common in woofers. The nodes marked on the figure 
has a correlative identification number. Nodes are 
numbered from 1 at the speaker frame to 43 at the 
cone rim. This model has been tested both with a 
spider and suspension, and as a single suspension unit 
(without the spider). The results do not change 
substantially, and the complete suspension is reported 
here. Applying load to the coil, the linear analysis 
shows the following details. First, a substantial part 
of the suspension is in compression, as Figure 16 
depicts in the radial stress component. This is the 
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cause of the buckling and jump the speaker does 
while it is vibrating at high amplitudes. The vertical 
node displacement plot of Figure 17 shows that 
around the nodes 10 and 34, where compression is 
significant, the suspension has maximum axial 
displacement, while the nodes in the center of the 
suspension have a small displacement, and the nodes 
at the suspension’s beginning (frame) and end (cone 
rim) have almost cero vertical displacement.  

 

 

 

Figure15: Detail of a piece of a double half roll 
suspensions. On upper figure a set of contour nodes is 
displayed. In lower figure the nodes 10 and 34 on 
roll’s top are displayed. 

 

Figure16: Detail of compressions on the suspension. 
The upper right part of each roll, marked with arrows, 
is in compression. The intense blue is marked with 
the b letter (for black and white print). 

 

 

 

Figure17: Detail of the vertical displacement of each 
node of Figure 15. Observe the non uniform 
displacement of the nodes. 

 

In Figure 18 the node rotation and the curvature for 
each node are depicted. Rotation is given in respect to 
the Z axis which is normal to the plane of the inset in 
figure. 

Curvature of a curved structure � is defined (see for 
example the reference [3]) as the inverse of the radius 
of curvature �, and has the value: 

dsd //1 θρκ ==  (14) 

Observe how in the figure that nodes 10 and 34, have 
a high rotation and how curvature change their signs 
in these nodes. This curvature shape indicates that, in 
both rolls, at the left of the nodes 10 and 34 we have 
positive curvature and at the right negative curvature. 
The vertical displacement and the curvature show 
that the suspension is performing the jump we have 
seen very often on the speakers at large strokes. 
However it is convenient to keep in mind that the 
compression band depicted in Figure 16 is the main 
cause for this buckling effect. 
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Figure18: Upper: Rotating angle of the nodes and the 
reference axis in the inset. Rotation is taken respect to 
the Z axis. Lower : Curvature of the nodes. 

 

 

 

 

 

Figure19: Upper a): Hoop suspension’s mode. 
“Radial” Suspension’s buckling mode. Lower b): 
Only the pure radial component of this mode. See 
appendix for details of the hoop modes. 

 

The compressive stress on the suspension can interact 
with the suspension’s radial mode, which is a hoop 
mode. At this mode the suspension performs as a 
bellows that open and closes radialy. Figure 19 
depicts this mode, observe that while the suspension 
is in this mode a certain axial motion is allowed in 
the suspension rim. While suspension is opening, the 
inner half roll is becoming a shallow arch (shallow 
half roll), and the outer half roll a high arch (high half 
roll). The lower figure illustrate only the pure radial 
component of this mode (the axial motion is restrain 
and hence, not allowed).  

In reference [9] a radial mode was defined in another 
way, because the definition was based on a cone’s 
modes, and these modes were defined a long time ago 
by McLachlan [26]. In fact this mode is a 
suspension’s hoop mode or an axisymetric mode. 
These axysymmetric modes are divided in symmetric 
and antysymmetric modes. This point is explained in 
the following example and in the appendix as well. 
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For a single half roll suspension the situation is 
similar to the one mentioned above. Figure 20 depicts 
a moving assembly provided with this suspension. 
After loading the coil downward we have the 
principal stress S1 depicted in Figure 21, where we 
see the compression band on the suspension, from the 
center to the frame approximately. Figure 22 depicts 
the vertical displacement and the curvature of all 
nodes. Similarly to the previous example, the 
suspension has the maximum vertical displacement 
on the central band of the roll. The curvature shown 
in Figure 22, presents a concave and a convex shape 
from node 1 to node 7. Notice these curvatures are 
similar to the ones shown for the shallow arch loaded 
uniformly by a radial pressure and depicted in Figure 
14. The curvature of the shallow arch is due to the 
mode-shape of the second mode of the arch. However 
the vertical displacement and the curvature of the half 
roll suspension are dues to the interaction of the two 
involved buckling modes. The main buckling mode is 
the speaker’s main mode, the second buckling mode 
is a radial (hoop) mode, which is more implicated 
with the compressive stress. Figure 23 depicts the 
hoop mode of the suspension. This mode is explained 
in the appendix. The hoop mode is an axisymmetric 
mode of the suspension. The hoop mode allows a 
certain axial displacement If the axial motion 
component is restrained we obtain only the 
symmetric part of this mode, which is depicted on the 
same figure. The jump of the speaker with two 
suspensions, which is the most common, has 
additional complications, but it is based on the same 
principles described here. Jumps of single 
suspension’s speakers have been described by 
Klippel [23]. He explained this has been measured 
even in very small transducers. 

 

Figure20: Single half roll suspension with the cone 
and spider. 

 

 

Figure21: Single half roll suspension showing the 
compression with detail on the inset. The intense blue 
is marked with the b letter (for black and white print). 
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Figure 22: Upper: Vertical displacement of the nodes. 
Lower: Nodes curvature. 
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Figure23: Upper a): Hoop (axisymmetric) 
suspension’s mode. Observe the associated axial 

displacement. Lower b): Symmetric part of the mode 
(see appendix). 

 

5. 1. Some explanations about multi-arch 
suspensions behavior. 

There are several reasons to manufacture suspensions 
with multi-arches. A significant cause is the design 
purpose to obtain a very soft suspension device in the 
axial direction, and very stiff in radial direction. This 
is the case of most spiders. The centering task of the 
spider demands this specific performance. 

Other reasons are more or less evident for the reader 
in respect to reaching targeted design capabilities. 
However one reason not reported in literature is the 
advantage these suspensions types give respect to the 
buckling process. 

Multi-roll suspensions improve the compression 
bands distribution over the full suspension. The 
compressed bands become distributed in various 
rolls, instead to be concentrated in the same band of a 
single or double roll. On the other hand, these bands 
have less compressed width than an equivalent 
suspension with a single half roll or the double roll 
shown before. The compression width is essential, 
because Euler’s law of buckling establishes that the 
critical load is inversely proportional to the square of 
the full compressed span (the compression width). 

Figure 24 depicts a stress distribution in a multi-roll 
spider. Observe the compression bands are 
distributed along the whole suspension and observe 
these bands are narrow. This is the cause that multi-
roll suspensions have fewer tendency to buckle that 
single or double half rolls. 
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Figure24: Spider deformed upward, showing the 
narrow compression bands distributed concentrically 
roll by roll. For black and white print b means intense 
blue color (high compression). 

 

6.  EVIDENCE OF BENDING AND IN PLANE 

STRESS ON SPEAKER’S SUSPENSIONS 

It was established in paragraph 1.1 that slender 
bodies once loaded will experience bending strain 
and stress when the load is applied, and the in-plane 
strain and stress will appear further. This was 
explained in a simplified manner by the example of 
the hose submitted to water pressure. Because the 
property that bending of slender shells can be seen 
easily by rotation, this can be visualized by means of 
a set of pins or needles. 

Figure 25 depicts a spider with two circumferential 
arrays of  pins glued on the inner roll and on the outer 
roll. The pins are glued on top of the inner and outer 
rolls. The upper figure shows the unload spider, and 
the lower figure depicts the loaded spider (with a 
rather small weight). The bending (curvature) on the 
inner roll is evident, meaning that in the load process, 
the inner rolls bends and the outer roll exerts in-plane 
stress because they do not bend. A basic idea of the 
sequence of bending and in plane stresses during the 
loading process can be seen loading the spider further 
and measuring or evaluating the angles of the pin 
arrays. 

 

 

 

Figure25: Upper: Unloaded spider. Lower: Loaded 
spider showing the bending strain on the inner roll 
and in plane strain on the outer roll. The contour of 
inner pins bents and the outer pins remain still. 

 

Figure 26 depicts a similar set up of three needles 
glued on a radius of a spider. The upper figure 
depicts the spider without load. In the lower figure 
we can see the rotation of the three needles once the 
spider is loaded with a rather small load. The figure 
demonstrated that a small load exerts bending in all 
the spider’s rolls of this particular specimen. The 
initial bending response delivers angles that go from 
the highest value at inner roll (needle 1) to the lowest 
at outer roll (needle 3).   
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Figure26: Upper: Unloaded spider with needles glued 
to the rolls. Lower: Spider showing the gradual 
bending from the inner roll to the outer roll by means 
of the variation of needle’s angle when load is 
applied. 

 

Vertical node displacement of the spider cross section 
of Figure 24 is depicted on the upper Figure 27; 
compare these results with those of Figure 17, where 
we saw axial displacement jumps. The node rotation 
in the Z axis (as in the ones of Figure 18) of this 
spider is depicted in doted lines in the lower part of 
Figure 27. The illustrated results are for the 
downward stroke. The continuous curve of this lower 
figure represents the vertical coordinate of the spider 
multiplied by ten. The geometry addition in the plot 
improves the physical understanding of data. 
Rotation gives an idea of the bending of all nodes. 
The results are represented on a wrap form, following 
the elements local coordinate system. Rotation of 
nodes in a linear analysis shows a smooth slope along 
the spider cross section and a small “rotation drift”, 
which is represented by the doted line. This rotation 

drift has only 2 degrees along the full spider span. 
Between two close roll maxima there is a rotation of 
12 degrees approximately, which implies a rotation of 
36 degrees for the full spider span. For this particular 
spider the linear analysis establishes that the bending 
(rotation) is almost uniform and smooth along the full 
span. This result fits, to some extent, with the angles 
we saw in Figure 26 by means of the additional 
needles for visual verification, but the visual 
inspection illustrated in Figure 26 gives a higher 
bending of the inner roll than the middle and outer 
roll has. It is common, especially in spiders of small 
size, to find experimental rotations that agree with the 
theoretical uniform rotation depicted in Figure 27, all 
over the cross section. The experimental 
demonstration of Figure 26 with higher rotations at 
the rolls of less radii than the rolls of higher radii is 
common as well. In practice there is a wide results 
scatter due to several circumstances. Among the 
many, there is a wide scatter of geometries and 
materials, and the problem has been treated here as 
linear. The problem accepts an stress analysis using 
only the bending terms of the mathematical 
evaluation procedure, and the comparison with the 
results using all terms, as was done in paragraph 2. 
But this point is not included in order to keep the 
paper short. 

Even though the results are given in the element’s 
local or regional coordinate system a better 
understanding of the results can be found in the 
sketch of the model’s orientation surfaces as depicted 
in Figure 28. If both, the closed surface a), and the 
open surface b) were oriented to the same point (on 
figure’s top), the shell’s orientation signs would be 
the ones shown in the figure. Rotations versus nodes 
depicted in Figure 27 are those obtained at each node, 
for the local coordinate system, while sweeping the 
upper side of the shells b) of Figure 28. 
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Figure27: Upper node displacement downward. 
Lower: Node rotation (doted curve) of the spider of 
Figure 24. Node 1 belongs to the frame and node 43 
belongs to neck. Continuous curve is the vertical 
coordinate of spider multiplied by 10. 

 

 

 

Figure28: Surfaces orientation for signs on the Finite 
element models. a) closed shell. b) opened shell. 

 

 

7.  CONCLUSIONS 

A short revision of the tensile and compressive 
stresses on moving assemblies of speakers has been 
presented, with special attention to the in-plane and 
bending stresses. 

The problem of subharmonic generation in some 
dome and suspensions of compression drivers, has 
been treated by  the nonlinear loading of the 
transducer in both strokes. The compressive stress 

concentration on the suspension’s contours in both 
strokes reveals that there is a parametric action that 
justifies this acoustic radiation. The method of static 
analysis is much simpler than the modal method.  

Finally, the same procedures applied for cones and 
domes demonstrates that the jump phenomenon in a 
loudspeaker is basically due to the buckling of its 
suspensions, due to the compression stresses that 
appears on wide bands (rings) of them. The paper 
describes the modes interacting on this buckling 
process. One of these modes is the main axial mode 
of the speaker, the second mode is one hoop mode of 
the suspension. Stress analysis together with the 
nodes displacements and rotation gives a clear picture 
of the buckling and structural behavior of the moving 
assemblies and suspensions. The advantage of multi 
roll suspensions respect to the one half roll and two 
half rolls has been treated as well.  

 

 

APPENDIX: THE HOOP MODES 

Reference [25] analyzes the modal analysis of an 
inflated torus. This paper gives an overview of this 
axisymmetric slender body. Due to the fact that the 
half roll suspension derives from a torus, it is 
interesting to note two important axisymmetric 
modes that this body has. Figure A1 depicts one of 
these modes, which is called the symmetric mode. 
The mode is called symmetric because it yields a 
symmetric picture of a meridional cross section. 
Figure A2 depicts the antisymmetric mode for a 
torus. Similarly this axisymmetric antysymmetric 
mode yields an antisymmetric picture of a meridional 
cross section of the torus. The depicted mode shape 
corresponds to a torus both inflated and in 
depressurized state as well. Reference [25] studies the 
influence of the torus aspect ratio on the natural 
frequencies of the antisymmetric and symmetric 
axisymmetric modes. Torus aspect ratio is based on 
the relationship r/R, being r the cross section radius 
and R the torus radius. 

Observe how the modes depicted on Figures 19 and 
23 are hoop modes of their respective suspensions. 
The depicted mode shape of the upper parts of figures 
19 and 23 was the antisymmetric part, and the modes 
depicted on bottom of these figures are the symmetric 
part of these suspension’s modes. The antisymmetric 
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part is the one which has higher interaction of the 
mode with the regular axial speaker mode. The 
symmetric part is more independent and has less 
capacity of interaction with the main speaker mode. 
However, due to the coupling to the cone, in practice 
it is more common to have antisymmetric modes than 
symmetric ones. 

 

Figure A1: Hoop suspension’s mode in a torus. 
Symmetric mode of the two axisimmetric modes of 
the torus. Bottom figure depicts the undeformed and 
the deformed cross section. 

 

 

 

 

Figure A2: Hoop suspension’s mode in a torus. 
Antisymmetric mode of the two axisimmetric modes 
of the torus. Bottom figure depicts the undeformed 
and the deformed cross section. 
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