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ABSTRACT 

The paper deals how to find the important modes in the moving assembly of compression drivers and other 
loudspeakers. Dynamic importance is an essential tool for those who work on modal analysis of systems with many 
degrees of freedom and complex structures. The important modes calculation or measurement in moving assemblies 
is an objective (absolute) method to find the relevant modes which acts on the dynamics of these transducers. Paper 
deals about axial modes and breath modes which are basic for loudspeakers. The model generalized masses and the 
participation factors are useful tools to find the moving assemblies important modes (target modes). The strain 
energy of the moving assembly, which represents the amount of available potential energy, is essential as well.  

 

 

 

1.  INTRODUCTION AND PURPOSE 

Target modes are those mode shapes that are 
determined to be dynamically important using some 
definition [1]. This concept has been widely used in 
various fields as the aeronautics, space engineering 
and in seismic engineering as well. In these fields it is 
very common to have modal analysis of structures 
with many eigenvectors and it is necessary to select 

only the most important modes. These modes are the 
target modes. 

The modal analysis of a moving assembly supplies 
several axisymmetric modes, and only some of them 
are indeed relevant for the final acoustic performance 
of the transducer. See, for example [2], for a general 
overview of these modes. The problem of the poles 
needed to develop a compression driver with a wide 
frequency range was stated by Murray and Durbin in 
1980 [3]. These authors established that at the upper 
frequency range it is needed some pole to have 
acoustic response at that frequency range. They 
considered the cases of a pole too low in frequency 
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and a pole too high in frequency as the main cause of 
a lack in acoustic response at high frequencies. 
Murray and Durbin deal with the influence of the 
suspension on the high frequency pole. This article 
has the intention to continue the analysis started by 
these authors adding more points of view to this 
problem. For simplicity all effects dues to the 
diaphragm air loading are not deal in the paper. It is 
obvious that mechanic explanations given in the 
paper must be extended taking into account these air 
loads as well. Non basic axisymmetric modes as: the 
rocking modes, suspension’s modes, etc., are 
important from the performance point of view, but 
cannot be considered as target modes defining the 
acoustic frequency response function. 

 

2. SHORT FORM ELEMENTARY PHYSICS 
ANALOGY AND MODES, FOR AN EXTENDED 
BANDWIDTH TRANSDUCER 

For sake of simplicity the dynamics of a moving 
assembly of a compression driver can be better 
understood by means of the analysis of a single 
slender beam suspended by two thinner beams at the 
ends, as Figure 1 depicts. 

Professor J. P. Den Hartog [4] explained the 
dynamics of a beam in bending, and he said: “The 
physical characteristic of any normal elastic curve of 
the beam is that the q (load per running inch) loading 
diagram must have the same shape as the deflection 
diagram”. “Any loading that can produce a deflection 
curve similar to the loading curve can be regarded as 
an inertia loading during a vibration”. This was stated 
in a similar manner by Timoshenko and Young [5]. 
Notice this asserts are the basis of the Rayleigh 
method to find the lowest eigenvalue of a structure or 
a system, which has been for long time used solving 
engineering problems. 

 

Figure 1: Thin round bar supported (suspended) by 
two short very thin round bars at the ends. 

 

.

 

Figure 2: Static response of Figure 1 (beam and 
suspension). 

 

Figure 3: Static response of the beam alone of Figure 
1. 

Assume we have a slender beam which has a very 
narrow short beam at their ends. The beam will take 
the function of a moving assembly, and the short and 
thin beams will take the function of a suspension. 
This elementary device is depicted on Figure 1. If we 
load statically the full beam of the Figure 1 we will 
find, as expected, a deflection curve with the shape of 
the Figure 2. This response is the one found in 
moving assemblies of loudspeakers due to the huge 
bending stiffness difference of the moving assembly 
and suspension. The usual well known static response 
of the beam without any suspension, loaded by its 
own weight, must be found applying the 
displacement restrains to the beam’s boundary. This 
response is depicted in Figure 3.  

However, when the suspended beam is submitted to 
dynamic loading or vibrations the first mode shape is 
the one depicted in Figure 4. If the beam is restrained 
by its ends and not by its suspension’s bars and if it is 
submitted to the same dynamic loading, the first 
mode shape is the one illustrated in Figure 5. Notice 
that these mode-shapes or eigenvectors have the same 
shape as their corresponding static loading depicted 
on previous figures. This is, in short form, the 
statement of Professor Den Hartog [4]. 

 If the body stiffness is much higher than the 
suspension’s stiffness, the eigenvalue of the mode-
shape depicted in Figure 5 is much higher that the 
eigenvalue corresponding to the modeshape of Figure 
4. This is well known by practice and by common 
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sense. Both modes depicted on figures are the target 
modes for this slender body. 

Strings and bars have been treated for long in 
mechanics books. 

 

Figure 4: Dynamic response. First mode-shape of the 
beam –suspension set of Figure 1. 

 

 

Figure 5: Dynamic response. First mode of the beam 
of Figure 1 when beam it is restrained by its ends but 
not by the beam’s suspension. 

 

2. 1. The mode shapes in moving assemblies 
of compression drivers. 

In compression drivers this simple correspondence 
between static and dynamic load can be applied as 
well. The main natural frequency and its 
corresponding mode shape of a compression driver of 
the dome type are generally well known; but the 
second target resonance is generally less well known. 
Figure 6 depicts a dome compression driver and the 
downward of the mode shape when the transducer is 
performing the well known low frequency resonance. 
The Figure 6 may be obtained just by static loading 
of the moving assembly by its own weight. 

 

 

 

 

Figure 6: Upper: Coil, Former and Dome of a 
compression driver with its suspension. Bottom: 
Shape of the moving assembly after loaded statically 
by its own weight. 

 

However, the second mode referred by Murray and 
Durbin, which in fact it is an important or a target 
mode, is much less known and often difficult to find 
by the design staff. Modal analysis of moving 
assemblies of compression drivers gives several 
eigenvalues and mode shapes which must be ranked 
in importance for the right goal of finding acoustic 
output at high frequencies as explained in [3].  

If we restrain the outer dome’s nodes instead of the 
outer suspensions nodes, and then we load the dome 
by its own weight, we will obtain the shape depicted 
in Figure 7. The restrained nodes are highlighted on 
the Figure. We will see later that this deformed body 
can be found as a mode when calculating the modal 
analysis of the body. In the case a single mode do not 
has the same shape, this shape can be found as a 
linear combination of some specific modes. This 
mode shape is the one focused by Murray and Durbin 
on their paper [3]. 
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Figure 7: The moving assembly after loaded by its 
own weight. The body is restrained in translation for 
all degrees of freedom at the dome-former interface 
(these nodes are highlighted). Observe details of the 
deformed former and the dome’s pole in the inset. 

 

3. GENERALIZED MASSES, PARTICIPATION 
FACTORS, AND STRAIN ENERGY OF A 
SLENDER BODY 

The main tool to find important and target modes is 
the value of the generalized mass. The definition of 
this concept can be found in books as [6] and papers 
as the ones in [1], [7] and [8]. 

This concept, and the participation factor, has been 
widely used in the field of seismic engineering. This 
is because, as in space engineering, the target modes 
must be enhanced respect to the many found in modal 
analysis of large bodies. 

Other aspects of interest for the use of the generalized 
mass concept are: a) to divide large model systems in 
subsystems [1], and b) separation of modes which 
have a certain overlap in spectrum [7].  

 If we have a system defined by: 

M FKxx =+&&  (1) 

Being: M: the mass matrix, K: the stiffness matrix, F: 
the forcing function, and being x  and x&& the 
displacement and acceleration vector respectively. 

The solution of the system (1) is found in terms of 
eigenvalues and eigenvectors. Being, as was said 

before, the eigenvectors the vibration mode shapes. 
Let Φ be the eigenvector matrix. 

The system’s generalized mass matrix m̂  is given 

by:  

ΦΦ= Mm Tˆ  (2) 

Generally, those modes which have high generalized 
mass are modes that are highly excited and they have 
relevant importance in the system’s response. This 
will be shown in the following paragraphs. See 
Appendix A for further details about the physical 
meaning of the generalized mass. 

The generalized mass concept is very important in 
dynamics because can be associated to the coherence 
concept in acoustics and vibrations. Notice that the 
generalized mass will be maximal when the mass 
matrix will “fit” with the mode shape, see equation 
(2). Notice in this equation the mode shape is 

represented by Φ  and by TΦ as well. Observe that 
in dynamics, we may have a motion of a certain point 
of a system in a specific direction because the action 
of inertia force(s) acting in other part(s) of the body 
and not necessarily in the same direction. The 
coherence is high if the motion of each part of a 
system is due to inertia force acting on the deformed 
point and applied in the deformation direction and 
sense. Simply speaking, we can say the coherence is 
high when the responsible of the deformation of a 
system’s part is the inertia force of each own 
deformed part. This is the cause of the high 
coherence of a pleated tweeter. In these transducers 
the acting forces deform the pleated moving 
assembly at the same points of deformation and at the 
direction of the needed mode shape. Thus, in these 
transducers the generalized mass is high for many 
modes. A high generalized mass for a specific mode 

which has a mode shape or eigenvector nΦ  must 

have the amplitudes of all nodes as high as possible 
in order to increase the products of equation (2). For 
example, in the main mode of a speaker all node 
masses of the moving assembly move with the same 
amplitude which equals 1. In this case, for this 
specific mode, the generalized mass, equals the 
moving assembly mass. This is the cause of the high 
excitation of the main mode in a speaker. This asserts 
might seams obvious, but as we will see, there are 
other interesting aspects of this topic. 
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The participation factor is another important 
parameter that has full application in the electro-
acoustic transducers field. In loudspeakers it is very 
important to target the modes which excite masses 
only in the excitation direction, and the participation 
factor takes this it into account. Translational 
components of the participation factors are defined 
as: 
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Where: 

Symbols are the previously defined and the rest are as 
follows: 

 i: is the component identification (the degree of 
freedom) (1 to 6) 

j: is the node identification (1 to N nodes the model 
has) 

v: is the mode identification (1 to V modes). V is the 
total number of modes found by the model extractor 

N: is the total number of modes. 

Thus, the participation factor ivr  for the mode v at 

the i direction equals the summation of all 
displacements j of the eigenvector Φ, times the 
associated masses divided (normalized) by the 
generalized mass of this specific mode. Observe the 
participation factor is an interesting concept because 
takes into account the global mass associated to one 
specific direction, and the coherence of this mass in 
motion due to the phase or the motion sense of all 
masses. Notice that at high frequencies (where the 
second target mode is activated) modes are localized, 
which implies loss of generalized mass. Thus, as the 
participation factor is normalized to the generalized 
mass, any localized mode will have a loss of the 
participation factor as well. 

A mode will be target if the generalized mass is high, 
and it is convenient that the axial participation factor 
shall be high as well. With this concept in mind it is 
easy to find which modes are target when designing a 
moving assembly 

The strain energy is equivalent to the generalized 
mass in the sense that the mass is the load of the 
system and associates the kinetic energy of it. 
Nevertheless the strain energy represents the elastic 
energy the body has and that it can be transferred to 
the surrounding air. This elastic energy is the 
available potential energy the body has to compress 
and expand the neighbor air. 

For definitions of the strain energy see for example 
[9] and [10]. It is basic to write down the definition 
of this concept. For shortening it will be referred to 
beams but the extension of this concept is similar for 
shells. 

Total potential energy or the elastic energy Π of a 
beam loaded axially by the load P  is: 

dx
dx

du
Pdx
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Being:
2

21

dx

ud=
ρ

, u(x) and w(x) are axial and 

transverse displacements measured from the 
unreformed axis of the beam. E and I are the Young 
modulus of the beam and the inertia moment of the 
beam cross section respectively. L is the beam length. 

Notice the first term of the right side of (4) is the 
bending energy, and the second term is the in-plane 
energy strain of the deformed beam. 

Figure 8 depicts the energy strain of the deformed 
moving assembly of Figure 7. Observe the elastic 
energy the body has is not necessarily were the 
deformation is greater (the dome center) but where 
the potential work is higher, which is on the dome 
interface with the former. This is in conformity with 
the explained in [11]. This point will be seen in depth 
later on. 
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Figure 8: Strain Energy diagram for the deformed 
moving assembly of Figure 7. Arrow shows the 
element with highest strain energy 

3. 1. Stability of structures. The minimum 
potential energy criteria. 

The stability of structures has been an important topic 
of physics since the beginning of the science studies. 
Lagrange’s theorem [10], [22] establishes that if the 
potential energy of a structure has a local or isolated 
minimum in the equilibrium position, then, the 
equilibrium is stable.  

From a practical point of view [10], today it is 
accepted that: the existence of a (weak) proper 
minimum of the potential energy in the equilibrium 
state constitutes, for all practical purposes, both a 
necessary and sufficient condition for the stability of 
this configuration in the sense of Lyapunov. It is 
reported [10] that in some situations, and for some 
structures, the state of zero strain and stress may be 
unstable as well. 

3. 2. Some instabilities of moving 
assemblies. Target modes which its potential 
energy is higher that the neighbor modes. 

In the case of dynamics of moving assemblies the 
problem can be stated in some different manner. 
While a suspended moving assembly is subjected to 
vibrate in a certain frequency range, it will exhibit 
modes. Each mode has its specific potential energy. 
Thus the modes which its potential energies are 

maximum in respect to its neighbours are less stable 
or even unstable. This can be the case of sub 
harmonics generation in some transducers, see [21] 
for example. If a transducer is forced to vibrate in a 
mode which is not stable, one way to escape of this 
mode is to migrate to a lower mode or to vibrate in a 
sub harmonic frequency. There are several practical 
performances on this situation, being one very 
common in practice to vibrate in two modes 
simultaneously, etc. Observe the sub harmonic is 
produced because the transducer is forced to vibrate 
in a mode which elastic energy is high. Sub 
harmonics need a certain voltage level to appear. If 
we increase the applied voltage at a frequency which 
corresponds to a mode shape of high elastic energy, 
the excess of energy supplied to the moving assembly 
is dissipated performing longer cycles, and one of 
these forms is the sub harmonic generation. 

 

4. TARGET MODES IN COMPRESSION 

DRIVERS. 

It is seldom in practice to have a single geometrical 
body as a single sphere or a single cylinder. Despite it 
is convenient to have moving assemblies as simple as 
possible, generally, they must have a coil, a 
diaphragm and a suspension. 

4. 1.  Moving assembly of two bodies which 
curvatures are in opposite directions. The 
axial mode. 

Imagine the theoretical case we would have a body 
which is formed by two hemispheres jointed by their 
poles, as it is depicted in Figure 9. This theoretical 
device it is suspended isotropically (by 6 springs) by 
the joint point of the hemispheres, which is the 
symmetry center of this body. Observe that this 
slender body has two curvature centers that are at the 
opposite sides of the suspension point. The total 
weight of this set of two stiff and thin hemispheres is 
14.9grams. The radius of each hemisphere is 76.76 
mm. Due to its geometry (stiffness distribution) and 
to the mass distribution, this body beside the main 
mode, trends to vibrate in a mode which is axial. This 
axial mode is one of the most relevant for this 
particular theoretical device. Figure 10 depicts this 
theoretical body mesh at rest. Figure 11 depict the 
two hemispheres performing both the main target 
mode and the axial target mode as well. The 
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generalized mass for the main mode is 14.9 grams; 
and for the axial mode it is 14.04 grams, which is 
very close to the total body’s mass. Obviously, the 
main mode has reached the total model mass but the 
axial mode which happens at high frequency has a 
high generalized mass as well. Generalized mass 
reflects the amount of mass involved on a specific 
mode. Apendix A gives deeper insight on this 
concept.  

However things are totally different from the 
participation factor point of view. The main mode has 
an axial participation factor of one, while the axial 
mode has a value close to zero. This is because the 
counter-phase response of one hemisphere respect to 
the other in the second mode. From the strain energy 
point of view the global elastic energy of the full 
body for this axial mode is fairly low. This is because 
the nature of the elastic energy is of the bending type. 

 

 

Figure 9: Two hemispheres jointed by its poles. This 
is an example of a compound body, with curvatures 
in opposition. The body is suspended isotropically by 
the common node. 

 

 

Figure 10: Finite element mesh of the theoretical 
device of Figure 9. Body is suspended isotropically 
by the interface node. Model is at rest. 
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Figure 11: Top: Main mode of the compound body of 
Figure 12. Middle and Bottom: Axial mode of this 
body. The generalized mass calculated for this mode 
is 14.04grams. 

4. 2.  Moving assembly of two bodies which 
curvatures are in the same direction: the 
breathing mode. 

If we joint the two hemispheres by their maximum 
circle, we will have a full sphere. This body will be 
suspended orthotropically by the equator circle. For 
this theoretical case we have the two curvature 
centers for the two hemispheres in the same point in 
space which is the sphere center. Modal analysis of 
this body has an important mode which is the sphere 
breath. The sphere open and closes synchronized by 
the in-plane forces. While the sphere exhibits this 

particular mode the generalized mass has the value of 
14.37 grams. Observe the calculated generalized 
mass is almost the full sphere mass. This indicates 
the importance of this specific mode. However the 
participation factor must be defined in one specific 
direction in Cartesian coordinates. As the sphere 
breaths radial, and not axially, the participation factor 
for any Cartesian coordinate is almost null. 
Acoustically the sphere delivers coherent sound 
waves when it is breathing. But, unfortunately the 
participation factor is not useful for a breathing 
sphere. The strain energy of the full sphere is large 
for this specific mode. The elastic energy is also 
large, because the nature of this energy is of the in-
plane type. Notice this mode can not be obtained by 
any dead weight loading of the body (by static 
analysis). To obtain that specific mode the inertia 
forces must act in all space directions. The breath 
mode, as the reader can see, is indeed a basic mode. 

 

Figure 12: Sphere orthotropically suspended by its 
equator, performing the breath mode. Generalized 
mass calculated is 14.37 grams.  
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4. 3.  The breathing mode in cylinders. 

This mode consists on a general extension and 
contraction of all cylinder particles. This mode is 
generally known as ring mode, see for example the 
references [12 ], [13], [14], [15] and the work of [16], 
which deals about it in depth.. This mode is very 
important because all acting forces are in-plane 
forces being full coherent. The mode is depicted in 
Figure 13. In the figure we see the former and coil’s 
breath. Each individual breath is depicted on the 
Figure. 

 

 

 

 

 

 

 

Figure 13: Upper Breath mode of the coil’s former. 
Lower: Breath mode of the coil. 

 

4. 4. Experimental measurement of the 
breath mode in a voice coil. 

Figure 14 depicts a simple experiment of ring 
frequency excitation in a coil. The aluminum voice 

coil has 100 mm diameter and 3 mm height. Voice 
coil is submitted to an axial magnetic flux as figure 
shows, while a sine sweep voltage is applied to its 
terminals. Due to the voice coil aspect ratio, the 
radial resultant force will excite the ring mode much 
hardly than in the speaker configuration, because the 
ring mode axial component is much lower than the 
ring mode radial component. Figure 15 depicts the 
acoustic radiation of this coil for a flat white noise 
spectrum voltage applied to its terminals. The 
measurement where made in the near field and the 
gap between coil and microphones was kept as equal 
in both channels as possible. Observe the sharp peak 
at 13088 Hz which corresponds to this ring or 
breathing mode. The former was removed leaving the 
coil free and the measurement was repeated again. 
The breath frequency rises to 14200 Hz because the 
former only add mass to the dynamics but not 
stiffness to the aluminum wire. 

 

 

Figure 14: Coil submitted to an axial magnetic field 
while intensity is circulating. Forces are radial and 
the body is vibrating “breathing”. The body below 
the voice coil it is soft foam. 

 

 

Figure l5: Radial acoustic response on the near field 
of an aluminum coil with its former. Coil’s diameter 
is 100 mm, and the coil’s height is 5 mm. Coil’s 
breath sound was measured by two microphones 
arranged radial 90 degrees apart.  
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4. 5.  Breathing mode in compound bodies. 

The moving assembly is the joint of two symmetric 
bodies: a spherical dome and a cylinder. Figure 16 
shows the moving assembly. This combined body has 
a global breath mode as well. Due to the mismatch of 
the meridian and tangential stress [11] at the former-
dome interface, high shear forces will appear at this 
contour. Due to the high stiffness of the dome, the 
coil-dome’s breath compound mode has a natural 
frequency which is higher than the one seen on the 
last paragraph. Despite the moving assembly breath 
mode exists as well, it is not a pure breath mode 
consisting of high coherence. The presence of shear 
forces at the interface decreases the coherence of that 
mode. However this can be considered a compound 
breath mode. 

The moving assembly performing the compound 
breath mode it is depicted in Figure 17. Observe the 
opening and closing of the coil’s and the extension 
and contraction of the dome contour. The complexity 
of this compound breath mode add bending at the 
dome’s pole, but the elastic energy of this bending is 
very small. Notice the dome is very shallow. 

 

Figure l6: Spherical segment and cylinder which 
curvatures are at the same side. 

 

 

 

Figure l7: Spherical segment and cylinder performing 
a compound breathing mode. Observe the coil’s ring 
motion. 

4. 6.  Main axial mode in compound real 
bodies. 

Due to the fact that the dome’s mass center it is 
above the interface contour line, and that the coil’s 
mass center it is below the same contour line, this 
body, which is structurally weak at the former, has a 
trend to exhibit a main axial mode as well. This mode 
it is depicted in Figure 18. Observe in the figure that 
the coil does not breath at all. The dome extends 
axially. Due to this, the dome’s pole bends as shown 
for the compound breath mode. Despite dome’s pole 
is bending with high amplitude, the strain energy it is 
small, because do not contribute significantly to the 
global strain energy of the moving assembly. It is 
convenient to analyze results in terms of response 
amplitudes, stresses and energies, but not by 
“pictures”. Notice that the spherical dome when 
loaded axially, it is soft in bending, at its pole area. 
At this axial mode the former it is highly stretched. 

Following the idea of 4.1 paragraphs, when the 
curvature centers are at bodies opposite sides, then 
the target axial mode it is highly activated. Figure 19 
depicts one of these designs in electro-acoustics. This 
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moving assembly has the main masses at opposite 
sides and has bending capability between both 
masses. Tuning the split masses and the bending 
stiffness of the lower spherical segment, the axial 
target mode can be activated.  This moving assembly 
trends to exhibit an axial mode, but due to its 
geometry, do not trend to exhibit a compound breath 
mode.  

This axial mode is depicted in Figure 20. The 
bending mechanism at the lower spherical segment it 
is clearly visible in the figure. 

 

Figure l8: Spherical segment and cylinder performing 
an axial mode. Dome is bending but the coil's former 
it is bending and stretching as well. See the 
explanations of pole bending on text. 

 

 

 

 

Figure l9: Moving assembly of two bodies which 
curvatures are at opposite sides. 

 

Figure 20: Main axial mode of the moving assembly 
of Figure 19. 
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5.  COMPETING MODES 

5. 1.  About the zeroes of a driving point 
mobility function. 

Murray and Siefert [17] made excellent motional 
impedance measurements. Some results are extreme 
difficult to obtain, especially those referred to the 
zeroes; this is mainly because the zeroes are points 
close to the measurement noise. The authors 
measured the moving assemblies at free air and in 
vacuum as well, and they used a dummy blocked 
transducer for discounting the pure electric 
impedance over the global transducer’s impedance. 
The subtraction of the electric impedance of the 
global impedance it is very useful, providing graphs 
of simple interpretation. Some poles found by the 
authors were not able to sustain the frequency 
response at high frequencies, where these poles were 
needed. Some poles which do not sustain the desired 
acoustic response they are placed very close to a 
nearby zero in the spectrum. These very close zeros, 
in some extend, neutralized the effect of the desired 
poles. Unfortunately, the authors do not gave 
explanation of the zeroes of the functions they 
measure. As explained, they put their focus only on 
the poles for an extended frequency range of the 
transducer. 

When testing the mobility of a structure we relate the 
force, which generally is the cause of motion, with 
the velocity which is the effect of this cause. On 
mechanical measurements there are two important 
functions depending on which structural points the 
velocity and the force is measured. If these points are 
physical apart, the measurement is called transfer 
mobility. If velocity is measured at the same point 
that the force it is applied; then the measurement, it is 
called driving point mobility. When measuring the 
impedance of a transducer, we relate the voltage at 
the voice coil terminals, which is proportional to the 
coil’s velocity, with respect to the intensity, which is 
proportional to the available force on the transducer. 
Both electric parameters are measured at the voice 
coil, which can be treated as the driving mass of the 
moving assembly. 

In literature is seldom treated the subject of giving 
physical interpretation of zeros, but this physical 
meaning simplifies the understanding of some 
laboratory measurements and specifically the 
impedance curves. 

The first point of interest is to relate the zero spectral 
position, in respect to the adjacent poles, related to 
the masses involved on the dynamics. Figure 21 
depicts the velocity spectral function of the coil and 
the associated cone of an ideal speaker with a total 
moving assembly mass of 80 grams. This speaker has 
the cone neck able to deform axially, allowing the 
voice coil and the cone being dynamically split in 
two masses. Black curve represents the velocity of 
the coil for a heavy voice coil of 70 grams, while red 
curve is the velocity response of the coil for a light 
voice coil, of only 10 grams. Observe the level 
difference for the two cases and the spectral position 
of the two poles, which is obviously, the same. 
Observe how the zero is closer to the second pole for 
the heavy voice coil, and observe how the zero is 
closer to the first pole for the light voice coil. The 
acoustic responses of these two theoretical 
loudspeakers will be completely different, not only 
because  the global level is much less for the speaker 
of a voice coil of 70 grams, but also because the zero 
of the speaker which coil weights 70 grams is very 
close in the spectrum to the second pole. 

 

Figure 21: Velocity spectra of a light (10 grams) and 
heavy (70 grams) voice coil attached to its associated 
cone. The moving assembly has a fixed total mass of 
80 grams. Velocities of the associated cones are 
depicted as well. 

 

5. 2. Driving point mobility measurements on 
two masses linked by a spring. 

Because the subject’s interest, experimental 
measurements done in a two degree of freedom 
system are presented here. The experimental set is 
depicted in Figure 22. A hammer with a force 
transducer impacts the tip of each mass on axis, while 
an accelerometer pick up the acceleration signal at 
the same excited mass on axis as well. 



Bolaños and Seoane  Target Modes of Moving Assemblies
 

AES 125th Convention, San Francisco, CA, USA, 2008 October 2-5 

Page 13 of 21 

Figure 23 depicts experimental modulus of the 
driving point mobility function of two masses linked 
by a spring. The masses are very different in weight, 
and the system’s driving point mobility was tested at 
both masses. Upper figure is the driving point 
mobility of the small mass, while bottom figure is the 
driving point mobility of the heavy mass. Observe the 
full scale value of the upper figure is 200 m while the 
full scale value of the lower figure is only 50 m. 
Observe the position of the poles and the zeroes. First 
pole is beyond left side of figure because the masses 
were suspended by a string and the first natural 
frequency it is very low, beyond the graph. Notice the 
zero it is difficult to be measured because it is buried 
into the measurement noise. But despite this 
circumstance, the zeroes of the figure follows the 
spectral position same criteria than the ones obtained 
theoretically on Figure 21. When the small mass it is 
excited by the force transducer, the zero between 
poles appears far apart of the second pole, which is 
the desired pole of the Murray’s and Durbing’s work 
[3]. Whereas the heavy mass is excited with the force 
transducer, the zero root appears close to the second 
pole. 

 

Figure 22: Experimental two degrees of freedom 
system for driving point mobility measurements. 

 

 

Figure 23: Driving point mobilities of the two 
degrees of freedom system of Figure 22. Upper: 
mobility of the light mass. Lower: mobility of the 
heavy mass. 

The explanation of the zero position between poles is 
cumbersome and not fully given [18], [19], but a 
rough idea can be given here. Reference [20] treats 
the problem of the zeros splitting a system in 
subsystems. Splitting the system in subsystems gives 
a much better point of view of the physical 
phenomena. Zeros are characteristics for those input 
signals that can be totally blocked by the system 
dynamics. 

The reader will remember that the mode-shapes of 
the masses of Figure 22 are in phase for the first 
mode and in anti-phase for the second mode. 

As in the first mode the spring between the masses do 
not absorb any potential energy (because it is not 
deforming) both masses act as a single one (of a 
global weight) absorbing the external input energy. 

However, the situation is completely different for the 
second mode where the spring deforms and absorbs 
external energy.  When the force is applied to the big 
mass of Figure 22, most energy is absorbed by the 
input mass, this energy is kinetic only. This kinetic 
energy is the source that acts on the spring to deform 
it. Because the external force it is applied to this big 
mass, the energy attacking the spring is the delivered 
by the external force loaded by high internal 
impedance, which is the big mass. Thus the energy 
available for the second small mass to perform the 
second mode it is clearly reduced because the input 
energy was applied to the big mass. The lack of 
energy available for the second mode is the "band 
stop" or the blocking action the system has. 
Nevertheless it is obvious that if the input energy 
were applied to the small mass, the amount of energy 
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available for the second mass to perform the second 
mode is much grater than the contrary case. In terms 
of a sweeping frequency the problem can be seen as 
follows: First the system is tuned to the first mode 
and both masses move synchronized in phase. Once 
the first mode has been past in frequency, the two 
masses must change their dynamics to a motion 
which is in anti-phase. In order to change the phase 
from in-phase to anti-phase, the driven mass must 
stop and change its motion sense until it reaches the 
anti-phase motion with respect to the un-driven mass. 
The driven mass stop is the system band stop or 
energy block of the input subsystem. It is obvious 
that, due to the nature of inertia forces, while 
sweeping the excitation frequency from low to high 
frequency, it is easier to stop before a small mass 
than a big mass while sweeping. This is the cause of 
a low frequency zero when the voice coil is light, and 
it is the cause as well of a high frequency zero when 
voice coil is heavy. 

5. 3.  Experimental evidence of competing 
modes. The suspension's effect over the 
moving assembly. 

Figure 24 depicts the in vacuum motional impedance 
function of a large diameter (100 mm diameter) dome 
compression driver. Scale is in arbitrary units but 
calibrated on dB; full span is 40 dB. Observe the zero 
at the cursor frequency (15104 Hz). Observe the 
small cluster of small poles marked with arrows at 
the right of the zero. The main high frequency pole is 
split on various peaks. This peak split can be caused 
by a dome that is not able to keep the structural 
stability. Observe the small peaks left to the zero (one 
is marked with an arrow).  Peaks like these can be 
what Murray and Durbin called "activity" [3]. 

 

Figure 24: In vacuo motional impedance 
measurements of a dome compression driver of large 
voice coil. 

After 5 hours that this transducer was in vacuum, it 
was submitted to the same measurement. The result is 
depicted in Figure 25. Notice the poles are the same 
but the zero has shifted to a very low value (8 KHz). 
This performance is due to the fact that the bulk of 
masses of the moving assembly changed their 
distribution after staying the moving assembly 5 
hours in-vacuum. The zero’s spectral shift implies a 
non linear behavior of the moving assembly and 
suspension set.  This nonlinearity is totally consistent 
with the idea of a dome which is not structurally 
stable [23]. 

 

Figure 25: In vacuo motional impedance 
measurements of a dome compression driver of large 
voice coil after 5 hours in the vacuum chamber. 

 

Murray and Durbin emphasized in their paper that the 
moving assembly’s suspension change was able to 
modify drastically the acoustic response of the 
transducer. But unfortunately the authors do not give 
full explanation of the suspension’s action on the 
moving assembly response.  

The most plausible explanation is that the moving 
assembly has two basic high frequency modes:  the 
compound breath mode and an axial mode as we 
have seen before. Dome transducers of big size have 
both modes in the audio frequency range, and they 
are not too far one from the other in spectrum. Small 
size dome compression drivers have these main high 
frequency modes beyond the audio frequency range, 
normally. These basic modes can compete in some 
circumstances. As we saw before for both modes, the 
coil’s former deforms substantially and, in some 
cases, it is not easy, at the first glance, to distinguish 
between them. The mode competition may be clearly 
solved (one mode overcome the other) by the radial 
forces of the suspension. These radial forces acts on 
the dome contour, where the strain energy is very 
high, and these suspension radial forces are close to 
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the former contour. Thus the suspension is able to 
influence which mode will be activated. This 
hypothesis is consistent with the cause of sub-
harmonic response of these transducers because the 
action of periodic forces on the dome-former-
suspension interface contour, see for example [11] 
and [21]. Figure 26 depicts a complete moving 
assembly with its undulated suspension and the effect 
of the radial forces acting on the moving assembly. 
Observe how much this shape resembles in some 
sense the breath mode and the axial mode as well. 
Observe how these suspension's radial forces split the 
full moving assembly in two subsystems (dome and 
former-voice coil), and the zero spectral position 
depends basically on the mass distribution of the two 
subsystems. Radial forces illustrated on Figure 26 are 
depicted independent of the rest of the moving 
assembly. In practice, generally, the moving 
assembly mass split will be more complex than the 
one represented on Figure 26. 

Thus, depending on several factors as: the 
generalized mass of the main high frequency modes, 
the strain energies of these modes, the influence of 
the suspension's radial forces, the non linearity, etc, 
one of these modes can be the one indeed excited. 
The cluster of poles instead of a single pole is due to 
the lack of stability of the large diameter and very 
thin titanium dome. This dome's stability lack is 
influenced by the industrial conforming process as 
well. 

 

 

Figure 26: Top: Moving assembly with its 
suspension. Bottom: Effect of the suspension's radial 
forces on the moving assembly (suspension is 
omitted on illustration for clarity). 

6.  CONCLUSIONS 

Target modes are those modes which have practical 
relevance in a structure. The designers have a 
difficult task when an extended band transducer is 
needed. The problem of the second pole for extended 
band transducers has been treated.  The first resonant 
mode in these transducers is well known, but the 
second pole is often unknown in practice. Both the 
axial mode and the compound breathing mode are the 
active second poles in a dome transducer, while in V 
shaped transducers, the second pole is the wing’s 
flapping mode (see Appendix B). 

Due to its importance, the breathing mode has been 
treated both numerical and experimentally as well. 

The axial mode can be enhanced designing a moving 
assembly made with bodies which curvature centers 
are at opposite sides. The dome compression driver 
can have the axial mode and the compound breath 
mode competing in some circumstances. The 
suspension is an active element that may aid to split 
the global mass in two masses, and can bias the mass 
sharing. The suspension’s influence was mentioned 
by Murray and Durbin in 1980 [3] but it was not 
explained in depth. 

Analysis of zeros on the motional impedance curve it 
is seldom treated in literature. In practice, the zeros 
between poles can act neutralizing the closer active 
pole. This point has been treated on the paper as well. 
For large but shallow domes it can be found 
structural instabilities creating some mode splitting in 
a cluster. In fact the migration in spectrum of a zero 
from 15 KHz to 8 KHz it is reported on a practical 
example. 

Generalized mass it is a well known and powerful 
parameter to establish the main modes. Participation 
factor gives the main index of mass participation for 
a specific direction. Due to the breathing nature, the 
participation factor does not apply well for the 
extensional mode. When target modes are needed at 
high frequencies, the strain energy is a useful tool to 
find them in an often large set of eigenfrequencies. 
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APPENDIX A: GENERALIZED MASS ON 
SIMPLE AND COMPLEX STRUCTURES. 

Assume we have a mass less bar loaded by an array 
of equally spaced masses which weights follow the 
function of the magnitude of a sine function. The 
beam and the set of masses it is depicted on Figure 
A1. The beam span corresponds to a complete 
circumference. Thus for this arrangement the mass 
step along the beam is π/8 radians. The bar ends are 
restrained in all degrees of freedom except the 
rotation Z (which is perpendicular to the paper 
surface), and the bar is free to move in X and Y, and 
free to rotate in Z. The beam it is loaded in X and Y 
but inertia moments are not loaded. The beam’s 
weight is 1 kg. 

Figure A2 depicts the first and second mode-shape of 
the beam loaded with the masses illustrated on figure 
A1. The generalized mass as it is defined on equation 
(2) is: 

ΦΦ= Mm Tˆ   

In this case, the elements of the diagonal of matrix M 
have the same magnitude as the absolute values of 

the eigenvector Φ  and its transpose TΦ . The 
calculation of the generalized mass m̂  it is trivial. 

Then, applying the definition of (2) we have the 
following results: 

 

Generalized Mass Mode 
1 

Generalized Mass Mode 
2 

528 grams 678 grams 

Observe that the second mode has a generalized mass 
which is much closer to the real beam mass of 1 Kg. 
than the first mode which is only 528 grams. 

Notice that the beam loaded with this “exotic” mass 
array or having a mass distribution closer to the 
second mode shape will trend to vibrate more in the 
second mode than in the first one. Observe this does 
not take into account the mode excitation due to the 
initial conditions for each mass in a free response 
test. For this particular example the main target mode 
is the second mode instead of the first one. Notice, 
however, the participation factor of this second mode 

is close to zero; this is because the mass of one half 
of the beam it is exactly the same as the other half 
and the motion of two halves is in antiphase. Observe 
that the low participation factor indicates that this 
mode is not targeted for a hypothetic transducer, 
because do not produce a substantial acoustic output 
(it is a dipole). 

 

Figure A1: A straight horizontal beam loaded with 
masses which shape fits with the square of the mode 
shape of the beam at the second mode. 

 

 

 

Figure A2: First and second mode of the beam loaded 
with the masses of Figure A1. 

As a comparison the Figure A3 depicts the first and 
second mode of the same beam free of these exotic 
loads, weighted by its natural weight, which is 1 Kilo 
gram and it is suspended by a small flexible 
suspension. 

The analyzed conditions are the same as the previous 
example, and the generalized masses are: 

 

Generalized Mass Mode 
1 

Generalized Mass Mode 
2 

999 grams 253.9 grams 
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Observe, as expected, the generalized mass of the 
first mode is almost the global beam mass. For this 

mode, all values of theΦ  and TΦ vectors equals 1; 
so that: Mm =ˆ . 

The second mode has a much lower generalized 
mass. If this suspended slender beam is vibrated, the 
first mode will be activated much more than the 
second mode. The results are close to the ones 
expected by experience and by the common sense 
applied to physics. 

 

 

 

Figure A3: First and second target mode of a round 
suspended beam loaded by its own weight. 

As a complementary example, it is interesting to see 
the motion of the moving assembly of a pleated 
tweeter. A moving assembly of this transducer it is 
depicted in Figure A4. The model was submitted to 
modal analysis. It is very interesting to realize that 
the generalized mass of this device it is very high at 
many modes, which are grouped in clusters by 
families of modes. This is because almost the total 
mass of each element of copper, in blue and red 
colors in the figure, is responsible of the deformation 
of each element it belongs to. Keeping a very high 
generalized mass over a wide group of normal modes 
is a specific characteristic for this pleated transducer. 
As we have seen in the paper this circumstance is 
very uncommon in other transducers. The main 
motion of this transducer is illustrated on Figure A5. 
Other mode that belongs to the same cluster is the 
mode 7, which it is depicted on Figure A6; observe 
the same motion type but grouping the pleats in a 

different manner. We will not go into details for 
shortening, but the generalized mass deviation 
between these individual modes in the cluster it is 
very small, and the generalized mass is very close to 
the total moving assembly weight. This is one of the 
main reasons the pleated transducer provides very 
good sound. 

 

 

 

Figure A4: Model of a pleated tweeter. 

 

 

 

 

Figure A5: Main motion (mode 2) of the pleated 
tweeter of Figure A5. 
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Figure A6: Mode 7 of the pleated tweeter of Figure 
A5. 

 

APPENDIX B: TARGET MODES IN A V 
SHAPE TRANSDUCER. 

The V shape transducers are widely used in 
electroacoustics, both in direct radiation and in 
compression as well. These transducers have an 
extended response if a strong activation of the second 
pole is carefully designed. 

The second mode can be statically determined 
following the principles shown in this paper. This is 
much simpler than performing modal analysis of the 
moving assembly. Figure B1 shows a V shape 
moving assembly, provided with a flat suspension. 
Suspension it is integrated on the V shape diaphragm 
as a single slender thin shell. Figure B2 shows the 
two target modes. At the main target mode the 
diaphragm and coil swing up and down, while at the 
second target mode the V diaphragm open and closes 
symmetrically. Notice how in the second mode the 
wing’s cross section of the diaphragm flaps moving 
the neighbor air or entering air in a compression 
chamber. This mode, as it must be, it has a high 
potential energy, and it is the cause of the extended 
radiation of the transducer in the high frequency 
region. Observe the similarity with the second target 
modeshape illustrated by statics on Figure 3 and the 
one illustrated by dynamics on Figure 5, for a single 
suspended beam. Observe in Figure B1 the main 
target mode is less symmetric than the second target 
mode. The design compromise consists in having a 
better deformation pattern on the diaphragm, which 
has revolution’s symmetry, for the second target 
mode, more than for the first one. This is because this 
transducer is a high frequency unit. The transducer 
under consideration has a moving assembly mass of 
0.43 grams. Notice the generalized mass of the main 
target mode is only 0.1183 grams. This is because the 
very small cantilever suspension and the V shape 
diaphragm design provide a main target mode of poor 
revolution symmetry. While the axial participation 

factor of the main target mode is unit. However, the 
second target mode, which it is very symmetric, has a 
generalized mass of 0.049 grams and the axial 
participation factor it is 0.24. Notice this device has 
the second target mode at 19 KHz. Observe in the 
figure, the coil it is in antiphase in respect to the 
diaphragm. Due to the mode localization on the V 
diaphragm, there is a substantial decrease of the 
generalized mass. This is the main cause that the 
axial participation factor will become reduced as 
well. In any way, for a high frequency target mode at 
19 KHz, the generalized mass and the axial 
participation factors are fairly good in this transducer. 

 

Figure B1: V shape transducer with a flat suspension 
at rest.  
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Figure B2: Upper: Main target mode of a V shape 
transducer with a flat suspension. Lower: Second 
target mode of the moving assembly. Only right side 
is depicted for clarity. 

 

APPENDIX C: MAIN AXISYMMETRIC MODES 
OF A CONE. ORTHOGONAL AXIAL MODES.  

The main modes of a truncated cone are very well 
explained in ref [24]. A basic mode on a cone is the 
breathing mode. The easiest way to understand the 
cone breathing is to imagine the shape of the cone 
while it is heated and cooled. If the cone had been 
free supported, then after heating it would became a 
bigger cone, and after cooling a smaller one. This 
motion or mode it is called the extensional mode, and 
it is very coherent. The extensional mode of a cone, 
which has attached a coil with its former, can be seen 
in reference [2]. The practical breathing of a cone it is 
commonly hidden by other circumstances, which are 
the presence of the coil in the moving assembly and 
due to the non neutral behavior of the suspensions 
(radial forces on suspensions). The cone breathing 
mode may be a target mode on a wide band speaker. 

As it is explained on [2], this mode usually appears at 
the upper region of the frequency response of the 
transducer.  

In moving assembly dynamics there are other modes 
which are important and are target as well because 
the high contribution to the frequency response. One 
type of these basic modes is the called axial mode 
[2]. These modes may appear clear (evident) when 
analyzing a moving assembly, and in practice, are 
due to the cone’s inertias and compliances and by the 
coil and former inertias and compliances as well. In 
some cases the suspension’s dynamics hide these 
important modes, and might become less evident. 

In practice, the axial modes include not only the cone 
but the coil as well; we simplify here the analysis to 
the single cone because theoretically it gives some 
light in respect to the target modes. Figure C1 depicts 
the mode-shapes of a cone for these two axial modes. 
The one on top has the main stiffness on the cone 
neck, and it is basically caused by the split of the 
moving assembly in two masses divided by the neck. 
The one on the bottom represent the split of the 
moving assembly mass in two masses due to the 
structurally weak cone rim. This particular mode can 
be excited if the neighbor suspension restrains 
substantially, or if this suspension is free to rotate at 
any circular contour as a swivel joint (this topic will 
be presented in future work). These two axial modes 
are orthogonal in respect to the system mass matrix. 
This point can be easily verified just applying the 
orthogonality relationship to the data delivered from 
the finite element solver for these two axial modes.  

Observe that the generalized mass definition given 
before represents the amount of similitude that one 
particular mode has in respect to the system (the 
mass). Instead, the orthogonality condition, which 

is: 0=ΦΦ j
T

i M , indicates the two modes i and j 

have nothing in common in respect to the mass of the 
system, which is the truncated cone itself. Notice that 
the generalized mass has been useful for finding 
relevant or target modes on this paper; and the 
orthogonality condition is useful to separate modes 
(by classes) in a cluster of them. See reference [25] 
for details of this topic. Observe that the practical 
sense of the “mass matrix” it is just the “system 
under investigation”. Mass matrix M must not be 
considered as a weighting function, as some books 
describe [26]; because in dynamics, the mass matrix 
it is the system itself. 



Bolaños and Seoane  Target Modes of Moving Assemblies
 

AES 125th Convention, San Francisco, CA, USA, 2008 October 2-5 

Page 20 of 21 

 

 

 

 

Figure C1: Upper: Mode 73 (1143 Hz) of a truncated 
cone restrained by the neck. Observe the main 
longitudinal motion due to in plane deformations. 
Lower: Mode 116 (1621 Hz). Observe the main 
radial motion due to cone rim bending. 
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