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ABSTRACT 

In this paper we describe some results that have led to the improvement of the response of an Air Motion 
Transformer loudspeaker. First, it is noteworthy that it has been found an approximate analytical solution to the 
differential equations system that governs the behavior of the moving assembly of this type of transducer, being this 
valid when the length of the pleat is much greater than the radius of the cylindrical part. This solution is valid for 
any type of analysis (static, modal and harmonic), and the modes are significantly simplified assuming the 
hypothesis above mentioned. In addition, we have analyzed the influence of the thickness and the shape of 
perforation of the pole piece in the frequency response of the loudspeaker. 
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1. INTRODUCTION  

In this paper we describe some results that have led to 
the improvement of the response of an Air Motion 
Transformer (AMT) loudspeaker.  
 
This work was developed in the context of research into 
optimizing the frequency response of an Air Motion 
Transformer loudspeaker – AMT onwards – with a 
pleated moving assembly like the one shown in Figure 1 
A description of this type of speaker can be found at [1] 
and [2]. A numerical model is presented in [3]. 

Theses results can be grouped into two blocks: a) that 
refers to the structural behavior of the moving assembly 
and b) about the influence and contribution of peripheral 
elements, particularly the pole piece, in the frequency 
response of this type of loudspeaker. 

 

Figure 1 Moving assembly and polar piece of a pleated 
loudspeaker 

With regard to the first block, it is noteworthy that it has 
been found an approximate and relatively "simple" 
analytical solution to the differential equations system 
that governs the dynamic behavior of the moving 
assembly of this loudspeaker (the dimensions have been 
taken according to commercial products). The 
approximate character is due to the fact that a 
simplification of the differential equations has been 
carried out, being this valid when the length of the 
loudspeaker is much greater than the radius of the 
cylindrical part of the pleats. The analytical expressions 
for the average surface displacement in any structural 

analysis (modal or harmonic), are considerably 
simplified by assuming the hypothesis above, being able 
to write as Levy type Fourier series, being the axial 
coordinate the one to which series expansion is applied.  

By means of this analytical model we can easily obtain 
two practical results. First of them is the determination 
of the fundamental mode that is related to the beginning 
of the useful response of the loudspeaker.  Secondly, the 
frequency corresponding to the main mode depends 
roughly linearly with the thickness of the base material 
of the moving assembly.  

To test the implemented analytical model, numerical 
experiments in FEM (using the software Ansys©) have 
been developed. It was found that the first natural 
frequency of the moving assembly (for exciting 
harmonic loads, i.e. those corresponding to more excited 
modes with those loads) obtained with this approach 
differ by less than 1% of that obtained in the FEM with 
Ansys©. In addition, a great similarity in the modes of 
vibration is observed. Moreover, we have analyzed and 
we have given an explanation to the effect of 
considering that the folds in the direction of radiation 
are narrower (smaller radius) than those that radiate to 
the back. 

Concerning second block, the one regarding to the 
acoustical component, several simulations have been 
carried out using the Finite Difference Time Domain 
Method (FDTD), to explain the influence of small 
variations in the thickness and the shape of the pole 
piece in the frequency response curve of the 
loudspeaker and the realization of a bevel on this part. 
The results of numerical experiments are confirmed 
with experimental measurements performed in anechoic 
chamber. 

To approach slightly to the operation of this type of 
loudspeaker, Figure 2 shows the typical frequency 
response curve of this type of loudspeaker. As it can be 
marked out, the useful range starts above 1200 Hz. 

On the other hand, Figure 3 shows the measured 
electrical impedance, where a small resonance can be 
appreciated around 1500 Hz. 

The interest of the first part of this work lies in the 
possibility of predicting the effect of small changes in 
geometry and the characteristics of the materials that 
compose the moving assembly in the frequency 
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response curve and the electrical impedance curve of the 
loudspeaker, without having to resort to numerical 
methods. 

 

Figure 2 Frequency response of TPL-150 loudspeaker 

. 

 

Figure 3 Total electrical impedance of TPL-150 

2. ANALYTICAL MODEL  

It is beyond the aim of this paper an exhaustive 
description of the methodology for carrying out a modal 
analysis. For a complete description of this 
methodology see [4 ]. This section explains the basics of 
the method (sections 2.1 and 2.2), discussing the results 
of the model implementation corresponding to a 
numerical experiment in FEM (2.3) and explaining a 
possible procedure to obtain the mechanical resonance 
frequency shown in the electrical impedance curve 
(2.4). 
Like any type of acoustic transducer, its operation 
involves the interaction between fluid and structure. 

This paper presents an analytical methodology to 
determine their modal behaviour, focusing on the 
structural part. The results will be useful not only to 
explain the operation of these loudspeakers, but for 
other structures with similar geometry. 
 
We are interested in obtaining an approximate analytical 
solution to the structural problem of calculating the 
natural frequencies and vibration modes for a structure 
consisting of an arbitrary sequence of plates and 
cylindrical panels connected by straight edges similar to 
the one shown in Figure 4. To approach the structural 
problem, we elected to start from a setting like the one 
shown in Figure 4, which shows a cross-section divided 
into five domains (I, II, III, and IV lower and IV upper). 
The domains I, II and III consist of a single layer of e1 
thickness while the other two have two layers of e1 and 
e2 thicknesses respectively. Material corresponding to 
layers e1 (Material 1) and e2 (Material 2) are different 
between them, being both elastic and homogeneous. 

2.1. Governing Equations 

The solution obtained in the next section builds on 
Classic Shell Theory (hereafter CST), assuming that 
thin sheets are handled and neglecting the shear strain. 
The differential equations of equilibrium for a circular 
cylindrical shell [5, 6] as applied to an open cylindrical 
shell of length L, radius R and subjected to an arbitrary 
surface load P are: 
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where (u, v, w) are the displacements along the x (axial), 
y (circumferential) and z (radial) axes respectively; the 

superimposed dot denoting time derivative, xP , yP , zP  

are the external force applied to the surface, R is the 
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radius of curvature and iN , iM , iQ  are the resultant 

stresses (Fig. 5). 
 
 

 
 
 

 

Figure 4. Example of a structure composed of plates and 
cylindrical panels attached by their straight sides, lateral 

view (Up) and three-dimensional view (Down). 
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The inertias iI are defined by the equations: 
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Figure 5.  Axes, applied load and resultant stresses for 

membrane (upper) and bending (lower). 

Although the term 
yQ

R
 in equations (1) that usually is 

negligible, we will use the full equation in order to have 
some information about the goodness of the 
assumptions that we will propose to develop the 
analytical solution. 
Moreover, the resultant stresses are related to the strains 
by the laminate constitutive equations: 
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where ijA , ijB , ijD are the laminate rigidities: 
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Using ijA , ijB , ijD the stress-resultant displacement 

relations can be deduced (see [4] 
The governing equations (1) can be expressed in terms 
of the displacement and, in matrix form, as: 

[ ]{ }L P∆ = −  (6) 
Where: 

{ } { }, ,
T

u v w∆ =  (7) 

The ijL coefficients are listed in [4]. The reader has to 

notice that on these coefficients all the terms are 
included. On this way, the comparison between 
numerical and analytical results that will be carried out 
in a further section will highlight the accuracy of the 
proposed method. 
Focusing on the structural problem, the main objective 
of this work is to find an analytical solution to structures 
composed of plates and cylindrical panels attached by 
their straight sides with the following boundary 
conditions: 

 
• Arbitrary at both straight final sides. 

• Hinge type at the two curved edges 0x= and 

x L= : 0xM u v w= = = =  

Where L is the panel length (length of the straight 
sides). Concerning to the internal boundaries between 
domains, continuity conditions have to be applied.  
To find the analytical solution we will use a Levy type 
solution, which has the general form: 
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A solution to a similar buckling problem is available in 
the literature [7] if the boundary conditions are: 

• Arbitrary at both straight sides. 
• Simply supported at the two curved edges 

0x = and x L= : 0x xM N v w= = = =  

However, no solution has been found in the available 
literature for the proposed boundary conditions, i.e. 

0u = instead of 0xN = on curved sides. 

2.2. Proposed Method 

The problem is addressed through: 
( , , ) ( , , )u x y t v x y t

x y

∂ ∂<<
∂ ∂

 (9) 

For single cylindrical panels, this means that the 
wavelength in x direction is much higher than in y 
direction, which is true for a lot of vibrations modes 
when the length of the curved side (which has the same 
order of magnitude as the radius) is much smaller than 
the length of the straight sides. However, there are some 
vibration modes in which this assumption can not be 
made, i.e. panel with free straight sides or when there 
are lots of half-waves in x-direction and a few in y-
direction. 

Moreover, for cylindrical panels with 0ijB = , the term 

1 v

R y

∂
∂

 is part of the curvature and therefore the 

simplification carried out in (9) is reinforced. This may 
happens for this kind of panels because the membrane 
energy is much lower than the bending energy. For 

panels with 0ijB ≠ , i.e. with non symmetrical layers, 

the assumption made in (9) can still be used because, for 
this kind of panels, the strains are on the same order 
than the curvature multiplied by its thickness.  
It may occur, as in the example application of this 
paper, that the simplification is not useful in some plate 

domain. But, if this has symmetrical layers ( 0ijB = ), 

calculate the w component of movement and the natural 
frequency by Rayleigh method is still possible due to 
the membrane energy – which only depends on u and v 
– is much lower than the bending energy – which only 
depends on w – and, besides, the simplifications done 
do not involve the w component of the movement. 
 
On the other hand, the structure we are working with is 
composed of domains with the straight part much longer 



Martinez et Al.  Contributions to the improvement …
 

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7 

Page 6 of 10 

than the curved one. For this kind of domain if 0xP =  

, the assumption (9) is better fulfilled. With these 
considerations, equation (6) can be rewritten as: 
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With the considered boundary conditions described 
above for this study, equation (10) has an analytical 
solution. To find this analytical solution, we use a Levy 
type solution, which has the general form given in (8), 

where the functions ( ),  ( ) and ( )u v wf y f y f y are 

obtained from the solution of an ordinary differential 
equations system with constant coeficients.  
 
From this point we will work with a model with a 
continuous mid-surface in all the domains. To do that, 
parts number IV have been moved in z direction. With 
this modification, the structure shown in figure 1 
becomes that shown in figure 7, in which the reader can 
note that the mid-surface is continuous.  
 
The simultaneous equations (10) will be solved in two 
parts: in the first part we will obtain the values of v(x, y, 
t) and w(x, y, t) and in the second part the value of u(x, 
y, t) will be obtained. The solution  developed is similar 
to this that in [8]. 
The second and third equations from (10) are: 
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Equation (11) can be solved through: 
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This solution consists of two parts, namely 
complementary function and particular integral. These 
two parts should be combined to obtain the overall 
solution. However, as we are interested in performing a 
modal analysis, we only need to solve the 
complementary function of the solution, which can be 
written as: 
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The accuracy of the solution obtained should be verified 
using equation (9). 
 

 
 

Figure 7: Example structure with the modification to 
have a continuous mid-surface 

 

For a particular 0m m= , the natural modes have the 

form: 
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Where 

01
i
mC are arbitrary constants obtained from 

boundary conditions and gi are listed in [ 4 ] 

2.3. Model Validation 

In order to verify the validity of the proposed method a 
Finite Element Model (FEM) has been implemented, by 
using the software Ansys 8.1. Referring to Figure 5, the 
geometrical data of the average surface are: 
 
• Cylindrical panel ratio: R=0.65 mm 

• Height of domains IV:  1.2 mm 

• Height of domain III: 0.96 mm 
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• Length of the straight sides: L=125 mm 
 
The material characteristics are: 

 Material 1 Material 2 
Elastic modulus 

(GPa) 
3 127 

Poisson 
coefficient 

0.33 0.345 

Density (kg/m3) 1400 8900 
Thickness (µm) 25 17 

 
Table 1 Materials characteristic (1 is the base material, 2 
is the reinforcement material). 
 
These measures and mechanical characteristics 
correspond to a real moving assembly of a commercial 
loudspeaker. 

In this FEM we have used a SHELL 181 element type 
which has six degree of freedom per node and satisfies 
the first order shear deformation theory. Large shear 
rigidity has been added in order to neglecting the 
deformation associated to this variable. Mapped 
meshing and Modal Analysis have been used. Due to 
the symmetry of the problem, only a half part has been 
modelled. Once meshed, the model is composed by 
545250 elements and 545218 nodes. 
 
The implemented model details are shown in Figure 8. 
Meshing and domain IV details can be appreciated: 
 

 
 

Figure 8 Meshing details 
 

There have also been developed two versions of the 
analytical model described in Section 3, AM1 and AM2, 
both with Mathematica 4.0. In AM1 version, the term 

yQ

R
 and the symmetrical terms have been neglected 

while none has been neglected in the AM2 version. In 
addition, we have compared the results with and without 
considering Rayleigh's Method. Results for natural 
frequencies are compared in Table 2 for first mode 

with 0 1m = . We have used only five summations in the 

Fourier series expansion for the u component. 
 
 

METHOD 
0f   (Hz) 

FEM (ANSYS) 990.1 
AM1 (Mathematica whitout 
Rayleigh’s Method) 

1112.1 

AM1 (Mathematica with 
Rayleigh’s Method) 

1002.8 

AM2 (Mathematica whitout 
Rayleigh’s Method) 

1011.7 

AM2 (Mathematica with 
Rayleigh’s Method) 

990.8 

 
Table 2. First modal frequency for each one of the 

models implemented 
 

Figure 9 represents the mode shapes for the fundamental 
mode. The results similarity can be appreciated. 
 

 
 
Figure 9. Comparative of the w component for the 
first mode shape; upper: AM2; lower: FEM; left: 

general view, right: detail view. 
 

Finally, the results obtained with the numerical 

experiment and analytical model for the ( )wf y of 

the displacement component w are compared in 
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Figure 10. To make this comparison a 

normalization of ( )wf y has been done through 

establish a maximum kinetic energy of 1 both in 
FEM and in AM2. As can be seen, they are 
practically coincident: 

 
Figure 10. Comparison between analytical and 

numerical results of ( )wf y . 

2.4. Mechanical Resonance 

Although not the aim of this work, there should be 
noted that for calculating the approximate mechanical 
resonance frequency that determines the peak in the 
impedance curve, one option would be the next one. To 
determine: 

a) The components u, v and w of the first mode 
shape from any of the models AM1 or AM2 (or 
with a FEM Model) 

b) The maximum strain energy in this vibration 

mode (structural)= sE  

c) The  average displacement  of w .=D 

d) The acoustic energy (related with the air 
deformation strain) by using the equation 
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22
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r E

EE
f

+
=

π2
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(Previously, we have normalized the maximum 
kinetic energy) 

For the geometry described above it has been obtained a 
result of 1532 Hz, very close to the experimental one 
shown in the Figure 3) 

3. POLAR PIECE ACOUSTIC 
CONTRIBUTION  

The front polar piece  figs 1 and 11,, forming part of the 
magnetic system, contributes to the frequency response 
of the loudspeaker. From the acoustic point of view is 
like a perforated plate. In room acoustics, where the 
acoustic measurements of interest are up to 4 kHz, 
perforated plates with a drilling rate of over 25% are 
considered transparent to sound. However, in the area 
where we are, we are dealing with systems that radiate 
higher frequencies sound and the effect of that piece is 
felt.  

 

Figure 11 Front polar piece 

In a first approach to the problem, there have been 
carried out several numerical experiments, 
implementing several simulations by using FDTD and 
FEM  that are methods well know  and usually used in 
the acoustic and electromagnetic context (see 
i.e.[8,9,10]) 

Although being different methods, models reflect the 
same pattern. 

Trying to simulate anechoic conditions, Perfectly 
Matched Layers (PMLs) have been applied to the 
models as it can be seen in Figure 12 and 13. The 
measurement point is placed 0.5 m from the 
loudspeaker, trying to simulate the experimental 
measurement conditions. Source was simulated as a flat 



Martinez et Al.  Contributions to the improvement …
 

AES 129th Convention, San Francisco, CA, USA, 2010 November 4–7 

Page 9 of 10 

piston with the same dimensions as those of the moving 
assembly. 

  

 

 

Figure 12 Model with Perfect Matched Layers (PMLs) 

 

 

Figure 13 Zoomed simulation assembly conditions 

Since the FEM and FDTD simulations confirm the 
experimental results obtained when measuring the 
frequency response in an anechoic chamber, we will 

only show the latter below while describing the 
experiment. 

3.1. Thickness of polar piece 

Figure 14 shows the frequency response of the 
loudspeaker variations when increasing the thickness of 
the pole piece (adding plates). The initial thickness was 
10 mm and each plate added was 1 mm thick. This 
effect can be appreciated above 8.5 kHz. The 
phenomenon can be easily explained with a two-
dimensional model. 

 

Figure 14 Effect of increasing front polar piece 
thickness 

3.2. Bevels 

Similarly, in the case of different bevel lengths and 
spacing, slight variations of the frequency response can 
be observed in the frequency response. 

 

Figure 15 Different bevel geometries 

Figure 16 shows a comparison of the frequency 
response in free field with and without bevel on the 
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front pole piece. The effect, as in the previous case, is 
only significant at high frequency, where the figure has 
been zoomed for better viewing. 

 

Figure 16 Effect of the bevel 

4. CONCLUSIONS 

We have presented a methodology to analyze the modal 
response of a structure composed of plate and 
cylindrical panels attached by their straight sides by 
using a simplification of the governing differential 
equations of the dynamic system. This approximation is 
valid when the length of the straight part is much greater 
than the radius of the cylindrical part. This condition is 
verified, i.e., in pleated moving assemblies of an AMT 
loudspeaker. 
By assuming the hypothesis above, the components of 
the mode shapes can be written as a Levy type Fourier 
series, where the axial coordinate is the one to which 
series expansion is applied.  
To test the analytical model implemented, a numerical 
experiment in FEM (using the software Ansys®) has 
been developed.  
It is important to note that the analyzed structure is only 
one part of the moving assembly. In fact, in a real 
moving assembly we find this structure duplicated at 
least twenty times.  
 
The first natural frequency of this structure obtained 
with this approach, for exciting harmonic loads  
corresponding to those  of the loudspeaker performance, 
differ by less than 1% from that obtained in  FEM with 
Ansys®. In addition, we saw a strong similarity in the w 
component. Finally, we should highlight its application 
to larger similar structures. 
 

On the other hand we have presented experimental 
results about the acoustic polar piece contribution in the 
frequency response.  
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